Quants Analyst (AVP Level)

Ludgate Hill
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineer - Equity Trading - Quant Hedge Fund - $325k

Quantitative Researcher (Machine Learning)

Senior Data Scientist

Machine Learning Engineer - Hybrid Remote

Machine Learning Engineer

Forvis Mazars is an engine for rapid and consistent career progression, offering individually designed career paths that help you pursue your interests, match your changing needs, and explore your true potential. We work with diverse, prestigious clients across a range of sectors and geographies, giving you the opportunity to constantly update and grow your skills for lifelong professional development.

Due to the continued growth of our FS Risk Consulting Department, we are looking for a Quantitative Analyst to join the Quantitative Finance Team based in London. You will mainly interact with banks but also insurance companies, large corporates and service companies on a variety of projects.

About the role

Contribute in small and large-sized multidisciplinary engagement teams delivering quantitative finance projects for clients:

Cross-asset derivative pricing including valuation adjustments (XVA). Calibration of models using best industry practices

Model validation for small to large size clients, for quantitative risk management models such as (PD/LGD, VaR, Expected Shortfall, EPE/PFE)

Implementation review of accounting standards such as FRTB, IFRS9, CECL

Development of internal pricing libraries and tools (e.g. C/ECL, stress testing)

Oversee summer internship projects

Support business development by preparing client proposals

Help with administrative tasks (such as training and recruitment)

What are we looking for?

Advanced knowledge in derivative pricing, quantitative risk management (covering credit, market and counterparty risk), stochastic calculus, modelling, statistics and probabilities

Strong significant experience either in derivative pricing, credit (PD and LGD modelling) and market (VaR, Expected Shortfall, FRTB) risk modelling

Strong experience in either of Python, R or C++

Ability to work in a team

Desired experience/skills: model validation and machine learning

About Forvis Mazars

Forvis Mazars is a leading global professional services network. The network operates under a single brand worldwide, with just two members: Forvis Mazars LLP in the United States and Forvis Mazars Group SC, an internationally integrated partnership operating in over 100 countries and territories.

Both member firms share a commitment to providing an unmatched client experience, delivering audit & assurance, tax and advisory services around the world. Together, our strategic vision strives to move our clients, people, industry and communities forward.  Through our reach and areas of expertise, we help organisations respond to emerging sustainability issues in the global marketplace including human rights, climate change, environmental impacts and culture.

We are one diverse, multicultural, multi-generational team with a huge sense of connection and belonging. This is a place where you can take ownership of your career, get involved, believe in yourself and put your ideas into action.

At Forvis Mazars, we empower our people and celebrate individuality. We thrive on teamwork and are agile. We have bold foresight and give people the freedom to make a personal contribution to our shared purpose. We support one another to deliver quality, create change and have a deeper understanding, to help make an impact so that everyone can reach their full potential.

Being inclusive is core to our culture at Forvis Mazars; we want to ensure everyone, whether in the recruitment process or beyond is fully supported to be their unique self. To read more about our approach .

Our aim is to make the recruitment process as accessible and inclusive as possible - please contact us to discuss any changes you may require so we can work with you to support you throughout your application.

Visit to learn more

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.