National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Quantitative Research - CDO Data Solution Architect - Vice President

J.P. Morgan
London
3 months ago
Applications closed

Related Jobs

View all jobs

Quantitative Researcher - Machine Learning

Quantitative Researcher with Machine Learning experience, Systematic Equities

Quantitative Researcher - Machine Learning

Quantitative Researcher – Machine Learning

Quantitative Researcher with Machine Learning experience, Systematic Equities

NLP/LLM Systematic Quantitative Researcher...

Are you passionate about data architecture and innovation? Join us as a Data Solutions Architect to bridge our Chief Data Office and Technology teams, designing advanced tooling to support our Markets Data Strategy. Lead the development of proof-of-concept prototypes and shape the future of our data initiatives.

Job summary:

As a Data Solutions Architect within Quantitative Research, you will play a crucial role in designing and promoting the adoption of advanced data tooling. You will prototype technical patterns for implementing Markets Data Standards and provide expert guidance on data usage within Markets. Your work will prioritize the delivery of technology data tooling, ensuring seamless integration with data and analytics platforms. Join us to drive data strategy through innovative solutions.

In this role, you will focus on automating data lineage registration and data quality monitoring. You will work with various technical teams to integrate strategic data management tools into workflows, enhancing our data management capabilities. If you have a strong background in data architecture and a passion for innovation, we invite you to join our team and make a significant impact on our data strategy.

Job Responsibilities:

  • Act as a bridge between the Chief Data Office and Technology teams
  • Design and promote the adoption of tooling to support the Markets Data Strategy
  • Develop proof-of-concept prototypes for cross-LOB priority data products
  • Prototype technical patterns for Markets Data Standards implementation
  • Automate data lineage registration and data quality monitoring
  • Provide guidance on data patterns usage within Markets
  • Prioritize technology data tooling deliveries supporting Markets
  • Ensure integration with data and analytics platforms and on-premises data stores
  • Integrate strategic data management tools into producer and consumer workflows

Required Qualifications, Capabilities, and Skills:

  • You have bachelor’s or master’s degree in Computer Science, Engineering, or related field
  • You have 5-10 years of experience in Financial Services technology
  • You have experience with data/technology projects in the Financial Services sector
  • You demonstrate excellent Python programming skills
  • You have proven experience as a Data Engineer or similar role
  • You have ability to build and optimize data sets and 'big data' pipelines
  • You are familiar with cloud services like AWS, Azure, or GCP
  • You demonstrate ability to work collaboratively across multiple technology teams

Preferred Qualifications, Capabilities, and Skills:

  • You have prior experience with Sell-Side analytics platforms (Athena, SecDB, etc.)

#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.