Machine Learning Engineer

G-Research
City of London
1 month ago
Create job alert

We tackle the most complex problems in quantitative finance, by bringing scientific clarity to financial complexity.


From our London HQ, we unite world-class researchers and engineers in an environment that values deep exploration and methodical execution - because the best ideas take time to evolve. Together we’re building a world-class platform to amplify our teams’ most powerful ideas.


As part of our engineering team, you’ll shape the platforms and tools that drive high-impact research - designing systems that scale, accelerate discovery and support innovation across the firm.


Take the next step in your career.


The role

We are looking for exceptional machine learning engineers to work alongside our quantitative researchers on cutting-edge machine learning problems.


As a member of the Core Technical Machine Learning team, you will be engaged in a mixture of individual and collaborative work to tackle some of the toughest research questions.


In this role, you will use a combination of off-the-shelf tools and custom solutions written from scratch to drive the latest advances in quantitative research.


Past projects have included:



  • Implementing ideas from a recently published research paper
  • Writing custom libraries for efficiently training on petabytes of data
  • Reducing model training times by hand optimising machine learning operations
  • Profiling custom ML architectures to identify performance bottlenecks
  • Evaluating the latest hardware and software in the machine learning ecosystem

Who are we looking for?

Candidates will be comfortable working both independently and in small teams on a variety of engineering challenges, with a particular focus on machine learning and scientific computing.


The ideal candidate will have the following skills and experience:



  • Either a post-graduate degree in machine learning or a related discipline, or commercial experience working on machine learning models at scale. We will also consider exceptional candidates with a proven record of success in online data science competitions, such as Kaggle
  • Strong object-oriented programming skills and experience working with Python, PyTorch and NumPy are desirable
  • Experience in one or more advanced optimisation methods, modern ML techniques, HPC, profiling, model inference; you don’t need to have all of the above
  • Excellent ML reasoning and communication skills are crucial: off-the-shelf methods don’t always work on our data so you will need to understand how to develop your own models in a collaborative environment working in a team with complementary skills

Finance experience is not necessary for this role and candidates from non-financial backgrounds are encouraged to apply.


Why should you apply?

  • Highly competitive compensation plus annual discretionary bonus
  • Lunch provided (viaJust Eat for Business) and dedicated barista bar
  • 35 days’ annual leave
  • 9% company pension contributions
  • Informal dress code and excellent work/life balance
  • Comprehensive healthcare and life assurance
  • Cycle-to-work scheme
  • Monthly company events


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.