Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer

G-Research
City of London
2 days ago
Create job alert

We tackle the most complex problems in quantitative finance, by bringing scientific clarity to financial complexity.


From our London HQ, we unite world-class researchers and engineers in an environment that values deep exploration and methodical execution - because the best ideas take time to evolve. Together we’re building a world-class platform to amplify our teams’ most powerful ideas.


As part of our engineering team, you’ll shape the platforms and tools that drive high-impact research - designing systems that scale, accelerate discovery and support innovation across the firm.


Take the next step in your career.


The role

We are looking for exceptional machine learning engineers to work alongside our quantitative researchers on cutting-edge machine learning problems.


As a member of the Core Technical Machine Learning team, you will be engaged in a mixture of individual and collaborative work to tackle some of the toughest research questions.


In this role, you will use a combination of off-the-shelf tools and custom solutions written from scratch to drive the latest advances in quantitative research.


Past projects have included:



  • Implementing ideas from a recently published research paper
  • Writing custom libraries for efficiently training on petabytes of data
  • Reducing model training times by hand optimising machine learning operations
  • Profiling custom ML architectures to identify performance bottlenecks
  • Evaluating the latest hardware and software in the machine learning ecosystem

Who are we looking for?

Candidates will be comfortable working both independently and in small teams on a variety of engineering challenges, with a particular focus on machine learning and scientific computing.


The ideal candidate will have the following skills and experience:



  • Either a post-graduate degree in machine learning or a related discipline, or commercial experience working on machine learning models at scale. We will also consider exceptional candidates with a proven record of success in online data science competitions, such as Kaggle
  • Strong object-oriented programming skills and experience working with Python, PyTorch and NumPy are desirable
  • Experience in one or more advanced optimisation methods, modern ML techniques, HPC, profiling, model inference; you don’t need to have all of the above
  • Excellent ML reasoning and communication skills are crucial: off-the-shelf methods don’t always work on our data so you will need to understand how to develop your own models in a collaborative environment working in a team with complementary skills

Finance experience is not necessary for this role and candidates from non-financial backgrounds are encouraged to apply.


Why should you apply?

  • Highly competitive compensation plus annual discretionary bonus
  • Lunch provided (viaJust Eat for Business) and dedicated barista bar
  • 35 days’ annual leave
  • 9% company pension contributions
  • Informal dress code and excellent work/life balance
  • Comprehensive healthcare and life assurance
  • Cycle-to-work scheme
  • Monthly company events


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.