Quantitative Developer, Systematic Equities.

Millennium Management
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist | Multi-Strat Hedge Fund | London

Machine Learning Engineer

Machine Learning and AI Engineering Lead

Senior Data Scientist

Senior Principal Data Scientist - Remote - 2318706

Senior Data Scientist

Quantitative Developer, Systematic Equities

Quantitative Developer, Systematic Equities

We are seeking a quantitative developer to partner focus on the development and subsequent optimization of infrastructure supporting the overall development and production of quantitative trading models. The ideal candidate will work directly with the quantitative researcher(s) and senior portfolio manager.

This team member will be responsible for the implementation of technology to enable large-scale computational efforts in quantitative research, as well as related efforts, such as the preparation and transformation of data and other operational tasks.

Preferred Location

London or Dubai preferred

Principal Responsibilities

Partner closely with the Portfolio Manager to develop data engineering and prediction tools primarily for the systematic trading of equities Develop software engineering solutions for quantitative research and tradingAssist in designing, coding, and maintaining tools for the systematic trading infrastructure of the teamBuild and maintain robust data pipelines and databases that ingest and transform large amounts of dataDevelop processes that validate the integrity of the data Implementation and operation of systems to enable quantitative research (i.e. large scale computation and serialization frameworks)Live operation of such systems, including monitoring and pro-active detection of potential problems and intervention Stay current on state-of-the-art technologies and tools including technical libraries, computing environments and academic research Collaborate with the PM and the trading group in a transparent environment, engaging with the whole investment process

Preferred Technical Skills

Expert in Python and/or KDB/Q Proficient in modern data science tools stacks (Jupyter, pandas, numpy, sklearn) with machine learning experience Good understanding of using Slurm or similar parallel computing tools Bachelor's or Master's degree in Computer Science, Mathematics, Statistics, or related STEM field from top ranked University  Proficient in quantitative analysis, mathematical modelling, statistics, regression, and probability theory Proficient in professional software development methodologies, version control systems, unit testing and debugging tools, and micro-services architecture Excellent communication, problem-solving, and analytical skills, with the ability to quickly understand and apply complex concepts

Preferred Experience

2+ years of experience in algorithmic trading systems development, preferably in systematic equity trading markets. Experience working with and centralizing multiple vendor data sets Experience collaborating effectively with cross functional teams, multitasking and adapting in a fast-paced environment

Highly Valued Relevant Experience

Entrepreneurial mindset Ability to multitask and adapt Curiosity and eagerness to learn and grow professionally Self-motivated, detail-oriented, and able to work independently in a fast-paced environment

Target Start Date

ASAP

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.