Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Quantitative Developer, Systematic Equities

Millennium Management LLC
London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer, MASS

Data Engineer, MASS

Data Engineer

Machine Learning Quant Researcher

Senior Data Engineer

Senior Market Data Engineer (C++)

Job Description: Quantitative Developer, Systematic Equities

Please send resume submissions to and referenceREQ-19460in the subject line.

Millennium is a top tier global hedge fund with a strong commitment to leveraging market innovations in technology and data to deliver high-quality returns.

A small, collaborative, and entrepreneurial systematic investment team is seeking an experienced developer to join in building critical trading infrastructure. This opportunity provides a dynamic and fast-paced environment with excellent opportunities for career growth.

Location: London

Principal Responsibilities

  1. Partner closely with the Portfolio Manager to develop data engineering and prediction tools primarily for the systematic trading of equities.
  2. Develop software engineering solutions for quantitative research and trading
    • Assist in designing, coding, and maintaining tools for the systematic trading infrastructure of the team.
    • Build and maintain robust data pipelines and databases that ingest and transform large amounts of data.
    • Develop processes that validate the integrity of the data.
  3. Implementation and operation of systems to enable quantitative research (i.e., large scale computation and serialization frameworks)
    • Live operation of such systems, including monitoring and pro-active detection of potential problems and intervention.
  4. Stay current on state-of-the-art technologies and tools including technical libraries, computing environments, and academic research.
  5. Collaborate with the PM and the trading group in a transparent environment, engaging with the whole investment process.

Preferred Technical Skills

  1. Master’s or PhD in Computer Science, Physics, Engineering, Statistics, Applied Mathematics, or related technical field appropriate to a computational background.
  2. Expert in C++.
  3. Advanced programming skills in Python.
  4. Strong Linux-based development.

Preferred Experience

  1. Extremely strong computer science or engineering background with 3+ years of experience.
  2. Approx. 3-4 years of professional experience in a computer science/computational role.
  3. Experience working in a technical environment with DevOps functions (Google Cloud, Airflow, InfluxDB, Grafana).
  4. Design and implementation of front-office systems for quant trading.

Highly Valued Relevant Experience

  1. Knowledge of machine learning and statistical techniques and related libraries.
  2. Experience as a quantitative developer supporting an intraday (or faster) system.
  3. Experience with the development practices of large tech (Google/Meta, etc.) or finance firms.
  4. Experience with financial data.

Target Start Date: As soon as possible

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.