Quantitative Developer, Systematic Equities

Millennium Management LLC
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist | Multi-Strat Hedge Fund | London

ESG Data Scientist

Data Analyst

Senior Principal Data Scientist - Remote

Principal Data Scientist

Python Data Engineer - Hedgefund

Job Description: Quantitative Developer, Systematic Equities

Please send resume submissions to and referenceREQ-19460in the subject line.

Millennium is a top tier global hedge fund with a strong commitment to leveraging market innovations in technology and data to deliver high-quality returns.

A small, collaborative, and entrepreneurial systematic investment team is seeking an experienced developer to join in building critical trading infrastructure. This opportunity provides a dynamic and fast-paced environment with excellent opportunities for career growth.

Location: London

Principal Responsibilities

  1. Partner closely with the Portfolio Manager to develop data engineering and prediction tools primarily for the systematic trading of equities.
  2. Develop software engineering solutions for quantitative research and trading
    • Assist in designing, coding, and maintaining tools for the systematic trading infrastructure of the team.
    • Build and maintain robust data pipelines and databases that ingest and transform large amounts of data.
    • Develop processes that validate the integrity of the data.
  3. Implementation and operation of systems to enable quantitative research (i.e., large scale computation and serialization frameworks)
    • Live operation of such systems, including monitoring and pro-active detection of potential problems and intervention.
  4. Stay current on state-of-the-art technologies and tools including technical libraries, computing environments, and academic research.
  5. Collaborate with the PM and the trading group in a transparent environment, engaging with the whole investment process.

Preferred Technical Skills

  1. Master’s or PhD in Computer Science, Physics, Engineering, Statistics, Applied Mathematics, or related technical field appropriate to a computational background.
  2. Expert in C++.
  3. Advanced programming skills in Python.
  4. Strong Linux-based development.

Preferred Experience

  1. Extremely strong computer science or engineering background with 3+ years of experience.
  2. Approx. 3-4 years of professional experience in a computer science/computational role.
  3. Experience working in a technical environment with DevOps functions (Google Cloud, Airflow, InfluxDB, Grafana).
  4. Design and implementation of front-office systems for quant trading.

Highly Valued Relevant Experience

  1. Knowledge of machine learning and statistical techniques and related libraries.
  2. Experience as a quantitative developer supporting an intraday (or faster) system.
  3. Experience with the development practices of large tech (Google/Meta, etc.) or finance firms.
  4. Experience with financial data.

Target Start Date: As soon as possible

#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.