National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Python Data Engineer III- Machine Learning

JPMorgan Chase & Co.
Glasgow
2 months ago
Applications closed

Related Jobs

View all jobs

Software Engineer III - Data Engineer - Python, SQL - Senior Associate

Software Engineer III - Data Engineer - Python, SQL - Senior Associate

Data Engineer II

Data Engineer II

Data Engineer II

Audio Machine Learning Engineer

Be part of a dynamic team where your distinctive skills will contribute to a winning culture and team.


As a Data Engineer III at JPMorgan Chase within the Developer Platforms and Insights team, you serve as a seasoned member of an agile team to design and deliver trusted data collection, storage, access, and analytics solutions in a secure, stable, and scalable way. You are responsible for developing, testing, and maintaining critical data pipelines and architectures across multiple technical areas within various business functions in support of the firm’s business objectives.

Job responsibilities

Design, develop, and deploy machine learning models to solve complex business problems. Collaborate with cross-functional teams to integrate ML models into production systems. Utilize PyTorch, Scikit-learn, NumPy, and Pandas for data analysis and model development. Develop and maintain APIs for model deployment and integration. Fine-tune large language models to enhance performance and accuracy. Apply deep learning architectures such as LSTMs and Transformers to relevant projects. Stay updated with the latest advancements in generative AI and implement innovative solutions. Conduct statistical analysis to support model development and validation.

Required qualifications, capabilities, and skills

Formal training or certification on Data engineering concepts and applied experience cProven experience in building and deploying machine learning models. Hands-on experience with PyTorch, Scikit-learn, NumPy, and Pandas. Proficient in Python programming language and building APIs. Solid understanding of statistics and machine learning theory. Experience with deep learning architectures, including LSTMs and Transformers. Experience in fine-tuning large language models. Knowledge of generative AI (GenAI) technologies. Strong problem-solving skills and the ability to work independently and collaboratively. Excellent communication skills to convey complex technical concepts to non-technical stakeholders.

Preferred qualifications, capabilities, and skillsExperience with cloud platforms such as AWS, Google Cloud, or Azure. Familiarity with version control systems like Git. Experience in deploying models using containerization technologies like Docker.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.