Python Data Engineer & Data Scientist

Marylebone
1 week ago
Create job alert

About the Company

Our client is striving to become the top provider of data-driven marketing and analytics in the Sports Betting and iGaming sectors. They leverage deep industry knowledge, proprietary technology, and expert media execution to deliver impactful results.

Specialising in cutting-edge acquisition and retention strategies across Meta, Programmatic, PPC, and alternative traffic channels, they excel in regulated, grey, and blackhat advertising methods, particularly for crypto casinos and sportsbooks.

What We Are Recruiting For

We are seeking a Python Data Engineer & Data Scientist to drive data strategy in digital advertising and marketing. This role blends Software Engineering, Data Engineering, Data Visualisation, and Data Science, ensuring seamless data integration. You will develop and maintain data pipelines, API integrations, and processing systems, with a future focus on AI and machine learning (ML). Experience in the gambling industry is preferred, along with a proactive, business-focused mindset. Collaborating with marketing teams and BI specialists, you will deliver insights to optimise decision-making and support AI-driven solutions.

What You Will Be Doing?

  • Data Pipeline Development & Maintenance – Design and optimise ETL/ELT processes, ensuring reliable and scalable data pipelines. Integrate campaign metrics like budgets, CTRs, CPAs, and ROI.

  • API Integration – Build and maintain API connections for platforms like Facebook Ads, Google Ads, and TikTok. Integrate data with BI tools such as Looker Studio, Tableau, and Power BI.

  • AI/ML Exploration & Implementation – Research and prototype AI/ML models for campaign optimisation. Explore tools like GPT and LangChain for automation and insights.

  • System Integration & Automation – Develop automated workflows and trigger actions in advertising systems based on data insights.

  • Collaboration & Best Practices – Work with cross-functional teams, implement software engineering best practices, and ensure data privacy and security compliance.

    What You Will Bring To The Party?

  • Technical Expertise – Proficiency in Python, data processing libraries (Pandas, NumPy), and ETL/ELT pipeline architecture. Strong API integration experience and knowledge of digital marketing metrics.

  • Data & Analytics Skills – Familiarity with BI tools like Looker Studio, Tableau, and Power BI. Understanding of GCP services, data orchestration tools (Apache Beam, Airflow, Prefect), and AI/ML frameworks (PyTorch, TensorFlow, Scikit-learn).

  • AI & Automation – Interest or experience in LLMs (LangChain, GPT) and AI-driven marketing automation. Ability to build and maintain AI/ML pipelines.

  • Software Best Practices – Experience with version control (Git), CI/CD, testing, and documentation. Understanding of AI/ML deployment and monitoring.

  • Soft Skills – Strong problem-solving abilities, a proactive mindset, and excellent communication skills. Ability to collaborate with non-technical teams and work independently in a fast-paced environment.

    What You Will Get In Return?

  • 25 days paid holiday per annum

  • Enrollment into pension scheme

  • Discretionary bonus

  • Hybrid working (3 days in the office)

  • Home office equipment

  • Learning and development budget

  • Regular team socials

  • Potential enrollment into EMI Scheme for employee share options

Related Jobs

View all jobs

Python Data Engineer & Data Scientist

Junior Data Engineer

Data Engineer

Senior Data Engineer

Data Scientist / Software Engineer

Data Engineer - Python & Azure

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.