PySpark Developer Manager

McGregor Boyall
London
10 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer, SQL, RDBMS, AWS, Python, Mainly Remote

Data Engineer Manager

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

AI & Data Science Manager / Senior Manager

PySpark Development Manager - Financial Risk TechnologyLeading Investment Bank | Canary Wharf, London | £800-£925 per day (Inside IR35) | Hybrid (3 days onsite)Leadership Opportunity in Financial Risk Technology

A prestigious investment bank is seeking an experienced Technical Manager to lead their team of PySpark developers working on mission-critical risk and analytics platforms. This is a hands-on leadership role requiring both technical expertise and people management skills.

Role Overview

You'll be responsible for managing a high-performing team of PySpark developers while providing technical direction on distributed computing solutions for financial risk management. The ideal candidate combines deep technical knowledge with excellent leadership capabilities.

Key Responsibilities

  • Lead and mentor a team of PySpark developers working on risk technology platforms
  • Establish technical standards and architectural direction for data processing systems
  • Oversee development of scalable data pipelines for risk calculations and regulatory reporting
  • Drive continuous improvement in code quality, performance, and development practices
  • Collaborate with stakeholders to align technology solutions with business requirements
  • Manage project delivery, resource allocation, and technical planning

Required Skills & Experience

  • 12+ years in software development with 5+ years in PySpark/big data environments
  • Proven leadership experience managing technical teams in financial services
  • Strong understanding of financial market risk concepts and reporting requirements
  • Deep expertise in distributed computing architectures and performance optimization
  • Experience with agile development practices and CI/CD implementation
  • Excellent communication skills and ability to translate complex technical concepts

This position offers an excellent opportunity to combine technical leadership with people management in a fast-paced financial environment. The successful candidate will shape the future of critical risk technology platforms.

McGregor Boyall is an equal opportunity employer and do not discriminate on any grounds.

amdyYWhhbS4xNzI5MS4xMjI3MUBtY2dyZWdvcmJveWFsbC5hcGxpdHJhay5jb20.gif

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.