National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Project Manager with Digital Banking Operations and Artificial Intelligence AI

Nexus Jobs Limited
London
6 months ago
Applications closed

Related Jobs

View all jobs

Senior Data Engineer

Tech Data Engineer

Data Analyst Placement Programme

Data Scientist

Data Engineer

FP & A Senior Data Analyst

Job Description

Project Manager with Digital Banking Operations and Artificial Intelligence AI

We are seeking a Project Manager with Digital Banking Operations and Artificial Intelligence (AI) Projects experience to join our Client a bank based in Central London.

This is a full-time role located in London, with flexibility for some remote work.

As an AI project manager, you be responsible for overseeing and managing the implementation of AI projects within our digital banking operations.

You will collaborate with cross-functional teams to define project goals, develop project plans, allocate resources, track progress, and ensure timely and successful delivery of projects.

Experience and Qualifications

  • Previous experience in project management, preferably within the banking or financial services industry
  • Strong understanding of digital banking operations and Artificial Intelligence AI technologies
  • Proven track record of successfully delivering complex projects on time and within budget
  • Excellent communication and interpersonal skills, with the ability to effectively collaborate with cross-functional teams
  • Strong problem-solving and decision-making abilities
  • Knowledge of agile project management methodologies
  • Experience with data analysis and reporting
  • Ability to adapt to changing priorities and work well under pressure
  • Project management certification (e.g., PMP) is a plus
  • Bachelor's degree in a relevant field



Areas to Consider

1. Customer Service Enhancement

  • Chatbots and Virtual Assistants: Deploy AI-driven chatbots to handle routine inquiries, provide 24/7 support, and reduce wait times.
  • Sentiment Analysis: Use AI to analyze customer feedback and sentiment from various channels to improve services.


2. Fraud Detection and Prevention

  • Real-Time Monitoring: Implement AI algorithms to detect and flag unusual transactions in real-time.
  • Predictive Analytics: Use machine learning models to predict potential fraud based on historical data and behavioural patterns.


3. Loan Processing Automation

  • Credit Scoring: AI can evaluate creditworthiness more accurately by analyzing a wider range of data points.
  • Document Verification: Automate the verification of documents submitted for loan applications, speeding up the approval process.


4. Personalized Banking Services

  • Customer Insights: Leverage AI to gain insights into customer behaviour and preferences, allowing for personalized product recommendations.
  • Marketing Campaigns: Use AI to target customers with tailored marketing campaigns based on their transaction history and preferences.


5. Risk Management

  • Risk Assessment: AI can analyze market trends and economic indicators to provide early warnings about potential risks.
  • Compliance Monitoring: Automate compliance checks and monitoring to ensure adherence to regulations and reduce the risk of non-compliance penalties.


6. Operational Efficiency

  • Process Automation: Use robotic process automation (RPA) to handle repetitive tasks such as data entry, account reconciliation, and report generation.
  • Workflow Optimization: AI can optimize workflows by identifying bottlenecks and suggesting improvements.


Implementation Strategy

  1. Assessment: Evaluate the current state of digital banking operations and identify areas where AI can add value.
  2. Pilot Projects: Start with pilot projects to test AI applications in a controlled environment.
  3. Scalability: Ensure that AI solutions are scalable and can handle increasing volumes of data and transactions.
  4. Employee Training: Train staff on AI tools and their applications to ensure seamless integration.
  5. Continuous Improvement: Regularly update AI models and algorithms based on new data and evolving business needs.


Challenges and Considerations

  • Data Quality: Ensure high-quality data for accurate AI predictions and analysis.
  • Regulatory Compliance: Stay compliant with financial regulations while implementing AI solutions.
  • Customer Trust: Maintain transparency in AI-driven decisions to build and maintain customer trust.
  • Integration: Seamlessly integrate AI with existing banking systems and processes.


The main emphasis of this position to is harness the data from a variety of data tables at the bank and collate a Data Lake from which to extract a variety of AI reports to increase the banks customer strategy.

By strategically implementing AI in these areas, a Digital Banking Operations Manager can greatly improve the efficiency, security, and customer satisfaction in digital banking operations.

The position will be hybrid 3 days a week in the office.

The salary is negotiable depending on experience but probably in the range £80K - £120K plus benefits.

Do send your CV to us in Word format along with your salary and notice period.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.