National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Product Owner - FMGC Data SAAS

Bristol
1 month ago
Applications closed

Related Jobs

View all jobs

Product Owner

Product Owner

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Product Owner

Main Objectives:

  1. Define and deliver a product roadmap for existing products that aligns with customer/industry need, and set the direction for new product development

  2. Manage the product development relationship with existing technical and data partners (Retail Insight, In Touch, Retail Spotlight), or any new partners, ensuring effective and efficient delivery of service

    Skillset Required

    In this role the individual must be capable of, and be able to demonstrate experience of:

    • Product leadership – Be able to lead product strategy and development, spanning between technical partners and clients

    • Relationship Management - Building relationships and engagement with all levels of stakeholders up to board level, internally and with technical partners

    • Customer Management – Working with product operations and customer contacts to ensure they’re getting value, gather their needs, and translate those into product requirements

    • Communication – Be able to clearly articulate and communicate with customer, partner, and internal stakeholders

    • Technical product development – Have a good working understanding of product development and leading-edge technology. Proficiency in Agile methodologies and principles.

    Responsibilities

    • Define and communicate the product vision, strategy, and roadmap for EPOS analytics SaaS platforms, with a focus on integrating AI, machine learning, and image recognition technologies.

    • Collaborate with stakeholders, including retail FMCG clients, to gather and prioritize product requirements.

    • Develop and maintain a detailed product backlog, ensuring alignment with business goals and customer needs.

    • Work closely with cross-functional teams, including development, data science, and design, to deliver high-quality, innovative products on time.

    • Conduct market research and competitive analysis to inform product decisions and identify opportunities for innovation.

    • Act as the primary point of contact for all product-related inquiries and decisions.

    • Facilitate Agile ceremonies such as sprint planning, reviews, and retrospectives.

    • Monitor product performance, analyse user feedback, and drive continuous improvement initiatives.

    • Ensure compliance with industry standards and regulations relevant to the retail FMCG sector.

    Experience Required

    To be successful in this role, the individual must have experience:

    • Proven experience in product owner or similar role, preferably in the field of EPOS analytics SaaS platforms.

    • Experience within the FMCG sector, ideally with an FMCG brand, and have a working knowledge of the UK Grocery and Convenience sectors.

    • Experience working and collaborating with external development partners.

    • Extensive experience in the management of product backlogs, through to tracking releases.

    • Experience with product management tools (e.g., JIRA, Trello).

    • Experience in integrating AI, machine learning, and image recognition into product development.

    • Bachelor’s degree in Business, Computer Science, or a related field preferable
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.