Product Owner - FMGC Data SAAS

London
1 day ago
Create job alert

Product Owner

Main Objectives:

  1. Define and deliver a product roadmap for existing products that aligns with customer/industry need, and set the direction for new product development

  2. Manage the product development relationship with existing technical and data partners (Retail Insight, In Touch, Retail Spotlight), or any new partners, ensuring effective and efficient delivery of service

    Skillset Required

    In this role the individual must be capable of, and be able to demonstrate experience of:

    • Product leadership – Be able to lead product strategy and development, spanning between technical partners and clients

    • Relationship Management - Building relationships and engagement with all levels of stakeholders up to board level, internally and with technical partners

    • Customer Management – Working with product operations and customer contacts to ensure they’re getting value, gather their needs, and translate those into product requirements

    • Communication – Be able to clearly articulate and communicate with customer, partner, and internal stakeholders

    • Technical product development – Have a good working understanding of product development and leading-edge technology. Proficiency in Agile methodologies and principles.

    Responsibilities

    • Define and communicate the product vision, strategy, and roadmap for EPOS analytics SaaS platforms, with a focus on integrating AI, machine learning, and image recognition technologies.

    • Collaborate with stakeholders, including retail FMCG clients, to gather and prioritize product requirements.

    • Develop and maintain a detailed product backlog, ensuring alignment with business goals and customer needs.

    • Work closely with cross-functional teams, including development, data science, and design, to deliver high-quality, innovative products on time.

    • Conduct market research and competitive analysis to inform product decisions and identify opportunities for innovation.

    • Act as the primary point of contact for all product-related inquiries and decisions.

    • Facilitate Agile ceremonies such as sprint planning, reviews, and retrospectives.

    • Monitor product performance, analyse user feedback, and drive continuous improvement initiatives.

    • Ensure compliance with industry standards and regulations relevant to the retail FMCG sector.

    Experience Required

    To be successful in this role, the individual must have experience:

    • Proven experience in product owner or similar role, preferably in the field of EPOS analytics SaaS platforms.

    • Experience within the FMCG sector, ideally with an FMCG brand, and have a working knowledge of the UK Grocery and Convenience sectors.

    • Experience working and collaborating with external development partners.

    • Extensive experience in the management of product backlogs, through to tracking releases.

    • Experience with product management tools (e.g., JIRA, Trello).

    • Experience in integrating AI, machine learning, and image recognition into product development.

    • Bachelor’s degree in Business, Computer Science, or a related field preferable

Related Jobs

View all jobs

Product Owner - FMGC Data SAAS

Product Owner - FMGC Data SAAS

Product Owner - VisNET

Product Manager

Principal Data Engineer

Senior Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.