National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Principal Statistician, Oncology Statistics

GSK
Stevenage
5 months ago
Applications closed

Related Jobs

View all jobs

Principal Pricing Analyst

Principal Pricing Analyst

Principal Data Scientist - Optimisation

Principal Data Analyst - Improvement Analytics Unit (IAU)

Principal / Senior Data Scientist

Principal Control Tower Data Analyst.

Job description
Site Name:USA - Pennsylvania - Upper Providence, GSK HQ, Stevenage, Waltham
Posted Date:Jan 24 2025

Clinical Statisticians are highly prized and urgently needed at GSK to grow an industry-leading team to ensure high quality quantitative reasoning is at the heart of every project in the portfolio. Our role is essential to ensure we maximize the use of every single data point available to efficiently determine translational strategies that are the foundation of our end-to-end clinical development plans. We need exceptionally talented and committed Statisticians like you to apply your statistical skills and innovative statistical methodology to drive key contributions to the development of new medicines.

The OncologyClinical Development Statisticsgroup have a Principal Statistician opportunity available to support assets within the Oncology disease area, providing statistical and strategic insight into the clinical development plan and design of end-to-end development strategies. This begins with early first in human trials, all the way through to late phase drug development. The team strive to use novel clinical trial designs and innovative statistical methodologies, including Bayesian techniques, to quantify risk across an entire program and enable smart decision making on where to invest to improve the probability of study and program success.

Key Responsibilities:

  • Provide required statistical support to Project and Study Statisticians across the oncology team.

  • Provide statistical input to the design, analysis, reporting and interpretation of clinical studies using a wide range of statistical approaches and/or applicable software (e.g. simulation, Bayesian methods, interim analysis strategies).

  • Author statistical analysis plans and prepare statistical input to key documents and presentation material.

  • Apply standard processes to tasks to ensure that deliverables are accurate, high quality and meet agreed timelines.

  • Build and maintain effective strategic working relationships with internal and external partners to meet business needs.

  • Identify, develop, and implement novel statistical methodologies in support of medicines development.

Basic Qualifications:

  • PhD in Statistics or related discipline, or MS in Statistics or related discipline with 3+ years of experience working as a Statistician within a CRO, Clinical Trial, or Academic setting in the Pharmaceutical Industry

  • Experience implementing innovative methods, such as Adaptive Design, Machine Learning, and Trial Simulation using SAS, R or other professional software

Preferred Qualifications:

  • Practical understanding of Statistical Modelling and its application to Real World clinical problems

  • Experience with Bayesian methods

  • Expertise and practical application in multiple statistical methodologies

  • Self-motivated and independent worker

  • Strong time management skills; able to effectively organize and manage a variety of tasks across different projects

  • Capable of applying innovative statistical thinking

  • Track record of strong performance in an academic or industry setting

  • Excellent interpersonal and communication skills

  • Capability in building and maintaining strong working relationships in a team setting

  • Demonstrated ability to explain novel and standard methods to scientific and clinical colleagues.

  • Strong influencing skills applied effectively across functions and levels of an organization

  • Time management and prioritization skills

#LI-GSK

Please visit GSK US Benefits Summaryto learn more about the comprehensive benefits program GSK offers US employees.

Why GSK?

Uniting science, technology and talent to get ahead of disease together.

GSK is a global biopharma company with a special purpose – to unite science, technology and talent to get ahead of disease together – so we can positively impact the health of billions of people and deliver stronger, more sustainable shareholder returns – as an organisation where people can thrive. We prevent and treat disease with vaccines, specialty and general medicines. We focus on the science of the immune system and the use of new platform and data technologies, investing in four core therapeutic areas (infectious diseases, HIV, respiratory/ immunology and oncology).

Our success absolutely depends on our people. While getting ahead of disease together is about our ambition for patients and shareholders, it’s also about making GSK a place where people can thrive. We want GSK to be a place where people feel inspired, encouraged and challenged to be the best they can be. A place where they can be themselves – feeling welcome, valued, and included. Where they can keep growing and look after their wellbeing. So, if you share our ambition, join us at this exciting moment in our journey to get Ahead Together.

If you require an accommodation or other assistance to apply for a job at GSK, please contact the GSK Service Centre at 1-877-694-7547 (US Toll Free) or +1 801 567 5155 (outside US).

GSK is an Equal Opportunity Employer and, in the US, we adhere to Affirmative Action principles. This ensures that all qualified applicants will receive equal consideration for employment without regard to race, color, national origin, religion, sex, pregnancy, marital status, sexual orientation, gender identity/expression, age, disability, genetic information, military service, covered/protected veteran status or any other federal, state or local protected class.

Important notice to Employment businesses/ Agencies

GSK does not accept referrals from employment businesses and/or employment agencies in respect of the vacancies posted on this site. All employment businesses/agencies are required to contact GSK's commercial and general procurement/human resources department to obtain prior written authorization before referring any candidates to GSK. The obtaining of prior written authorization is a condition precedent to any agreement (verbal or written) between the employment business/ agency and GSK. In the absence of such written authorization being obtained any actions undertaken by the employment business/agency shall be deemed to have been performed without the consent or contractual agreement of GSK. GSK shall therefore not be liable for any fees arising from such actions or any fees arising from any referrals by employment businesses/agencies in respect of the vacancies posted on this site.

Please note that if you are a US Licensed Healthcare Professional or Healthcare Professional as defined by the laws of the state issuing your license, GSK may be required to capture and report expenses GSK incurs, on your behalf, in the event you are afforded an interview for employment. This capture of applicable transfers of value is necessary to ensure GSK’s compliance to all federal and state US Transparency requirements. For more information, please visit GSK’s Transparency ReportingFor the Recordsite.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.

LinkedIn Profile Checklist for Machine Learning Jobs: 10 Tweaks to Drive Recruiter Interest

The machine learning landscape is rapidly evolving, with demand soaring for experts in modelling, algorithm tuning and data-driven insights. Recruiters hunt for candidates proficient in Python, TensorFlow, PyTorch and MLOps processes. A generic profile simply won’t cut it. Our step-by-step LinkedIn for machine learning jobs checklist covers 10 targeted tweaks to ensure your profile ranks in searches and communicates your technical impact. Whether launching your ML career or seeking leadership roles, these optimisations will sharpen your professional narrative and boost recruiter engagement.

Part-Time Study Routes That Lead to Machine Learning Jobs: Evening Courses, Bootcamps & Online Masters

Machine learning—a subset of artificial intelligence—enables computers to learn from data and improve over time without explicit programming. From predictive maintenance in manufacturing to recommendation engines in e-commerce and diagnostic tools in healthcare, machine learning (ML) underpins many of today’s most innovative applications. In the UK, demand for ML professionals—engineers, data scientists, research scientists and ML operations specialists—is growing rapidly, with roles projected to increase by over 50% in the next five years. However, many aspiring ML practitioners cannot step away from work or personal commitments for full-time study. Thankfully, a rich ecosystem of part-time learning pathways—Evening Courses, Intensive Bootcamps and Flexible Online Master’s Programmes—empowers you to learn machine learning while working. This comprehensive guide examines each route: foundational CPD units, immersive bootcamps, accredited online MSc programmes, funding options, planning strategies and a real-world case study. Whether you’re a software developer branching into ML, a statistician aiming to upskill, or a professional exploring AI-driven innovation, you’ll discover how to build in-demand ML expertise on your own schedule.