Power Automate Data Engineer

Vallum Associates
Leeds
11 months ago
Applications closed

Related Jobs

View all jobs

Lead Data Engineer

Lead Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer – TV Advertising Data (FAST)

Role: Data Engineer with Power Automate

Location: London (preferred), open to Birmingham, Manchester, or Newcastle

Duration: 6+ months contract


Mandatory: Power Automate Experience & Databricks


A "Data Engineer with Power Automate" job description would typically seek a candidate with strong data engineering skills, including data extraction, transformation, and loading (ETL), combined with proficiency in using Microsoft Power Automate to automate data workflows and processes within a business system, often integrating with various data sources and applications across the Microsoft Power Platform.


Key Responsibilities:

  • Design, build, and maintain data pipelines using Power Automate to extract data from diverse sources (databases, APIs, flat files, etc.), transform it as needed, and load it into target systems like data warehouses, data lakes, or business applications.
  • Create automated workflows within Power Automate to streamline data processing tasks like data cleansing, validation, and data quality checks.
  • Connect Power Automate to various Microsoft services like SharePoint, Dynamics 365, Azure, and Office 365 to facilitate seamless data flow between different systems.
  • Implement data quality controls and data governance practices within Power Automate workflows to ensure data accuracy and consistency.
  • Work with business analysts, data analysts, and other stakeholders to understand data requirements, translate them into Power Automate solutions, and deliver actionable insights.


Required Skills:

  • Strong understanding of data warehousing concepts, data modeling, ETL processes, data quality best practices.
  • Extensive experience designing and developing complex workflows using Power Automate, including connectors, triggers, actions, and data manipulation.
  • Proficient in at least one programming language like Python, SQL, or C# for data manipulation and custom logic within Power Automate.
  • Familiarity with Azure data services (Azure Data Factory, Azure Data Lake, Azure SQL Database) for large-scale data processing.
  • Ability to analyze data using Power BI or other data visualization tools to identify trends and insights.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many Machine Learning Tools Do You Need to Know to Get a Machine Learning Job?

Machine learning is one of the most exciting and rapidly growing areas of tech. But for job seekers it can also feel like a maze of tools, frameworks and platforms. One job advert wants TensorFlow and Keras. Another mentions PyTorch, scikit-learn and Spark. A third lists Mlflow, Docker, Kubernetes and more. With so many names out there, it’s easy to fall into the trap of thinking you must learn everything just to be competitive. Here’s the honest truth most machine learning hiring managers won’t say out loud: 👉 They don’t hire you because you know every tool. They hire you because you can solve real problems with the tools you know. Tools are important — no doubt — but context, judgement and outcomes matter far more. So how many machine learning tools do you actually need to know to get a job? For most job seekers, the real number is far smaller than you think — and more logically grouped. This guide breaks down exactly what employers expect, which tools are core, which are role-specific, and how to structure your learning for real career results.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.