Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Platform Engineer (Machine Learning Operations)

Builder.ai - What would you Build?
London
8 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer - Revenue Platform

Senior Platform Engineer, Machine Learning

Senior Data Engineer, Data Platform

Engineering Manager, Machine Learning Platform

Senior Data Engineer

Data Engineer - Gloucester

About Builder.ai

We’re on a mission to make app building so easy everyone can do it – regardless of their background, tech knowledge or budget. We’ve already helped thousands of entrepreneurs, small businesses and global brands, like NBC Universal and Pepsi, as well as American organizations like Bobcat and Smart Path, achieve their software goals. And we’ve only just started!
Builder.ai was voted as one of 2023’s ‘Most Innovative Companies in AI’ by Fast Company, and won Europas 2022 ‘Scaleup of the Year’. Our team has grown to over 800 people across the world and our recent announcement of $250m Series D funding (and partnership with Microsoft) means there’s never been a more exciting time to become a Builder.

Life at Builder.ai

At Builder.ai we encourage you to experiment! Each role at Builder has unlimited opportunities to learn, progress and challenge the status quo. We want you to help us become even better at supporting our customers and take AI app building to new heights.

Our global team is diverse, collaborative and exceptionally talented. We hire people for their differences but all unite with our shared belief in Builder’s HEARTT values: (Heart, Entrepreneurship, Accountability, Respect, Trust and Transparency) and a let’s-get-stuff-done attitude.

In return for your skills and commitment, we offer range of great perks, from hybrid working and a variable annual bonus, to employee stock options, generous paid leave, and trips abroad #WhatWillYouBuild

Why We Need This Role

We are looking for a Platform Engineer (Machine Learning Operations)  to help us maintain and expand an ecosystem of microservices developed within the Artificial IntelligenceGroup. We leverage a range of AI techniques including large scale knowledge graphs and Generative AI (LLMs for text and images). The role includes ensuring robustness and scalability of AI-based production APIs, as well as data and model training pipelines.  As we push the boundaries of what is possible, and scale our systems to improve the services we deliver to customers and internal teams, we need individuals that can help us innovate fast, but maintain a high quality bar.

Why You Should Join

The position will be at the intersection of data science and development operations. The candidate would want to join because of the extreme variety of problems we are facing: support to data scientists in the development of AI-based production APIs; support the design, implementation, deployment, maintenance of our microservices infrastructure, data and model training pipelines. This is an engaging role and the ideal candidate should be an eager problem solver that takes pride in the production of clean, robust and scalable solutions.

Our Tech Stack

  • Python
  • SQL
  • Cypher
  • Git/Gitlab and CI/CD workflows
  • Terraform
  • Docker and Kubernetes (kubectl, helm, helmfile)
  • AWS, Azure

Requirements

      • Computer Science or Software Engineering degree / BSc or higher
      • Strong Python coding experience
      • Experience with the SQL querying language
      • Experience working with Docker both in development and deployment environments
      • Experience reading/implementing CI/CD workflows
      • Experience with software engineering best practices: unit testing (with mocks), code reviews, design documentation, excellent debugging, troubleshooting skills
      • Excellent communication & drive to learn and experiment
      • Passionate about loosely held values and ideas. We want someone who has experience but is not blinded by the path already taken.
      • Makes decisions based on data and evidence.

Added bonus:

      • Background in running Kubernetes
      • Experience with Graph databases
      • Hands-on experience in all facets of automation and systems architecture, with particular focus on Linux and open source technologies
      • Experience with GitLab
      • Experience working in Cloud environments, in particular Azure or AWS

Benefits

    • Attractive quarterly OKR bonus plan or commission scheme dependant on your role
    • Stock options in a $450 million funded Series D scale-up company
    • 24 days annual leave + bank holidays
    • 2 x Builder family days each year
    • Time off between Christmas and New Year
    • Generous Referral Bonus scheme
    • Pension contributions
    • Private Medical Insurance provided by AXA 
    • Private Dental Insurance provided by Bupa 
    • Access to our Perkbox

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.