PhD Studentship: Developing digital tools to support a personalised preventative pathway for childrens mental health

University of Cambridge
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Researcher Statistics Python AI

NLP/LLM Research Scientist (PhD) – Cambridge Hybrid

Graduate ML Research Engineer: Satellite Imagery & NLP

Exoplanetary Remote Sensing & Data Science Postdoc

Assistant/Associate Professor, Air Quality & Data Science

Assistant Professor of Statistics & Data Science

Based within the Timely Research Group, Department of Psychiatry, University of Cambridge

A full scholarship funded through Peterhouse, University of Cambridge

The studentship will be hosted within the Timely Research Group, Department of Psychiatry. The Department has an outstanding international reputation in research, rated the best psychiatry department in the UK and in Europe, and has excelled in the last three Research Assessment Exercises. The University of Cambridge is consistently ranked among the very top universities in the world.

The Timely project aims to develop digitally supported personalised prevention pathways for children's mental health services. Baseline work has been carried out to construct a linked, population-level, multi-agency, longitudinal database including administrative and clinical records from health, education and social care records. A blueprint for a preventative pathway has been developed. This project will take forward the blueprint, refine it with a broad range of stakeholders including children and families, and co-develop detailed specifications for AI-driven digital tools. Particular attention will be placed on taking a responsible AI approach.

We are particularly interested in candidates who would like to use large longitudinal datasets to investigate how heterogeneous factors contribute to differences in neurodevelopmental and mental health conditions. As a part of the PhD, candidates will build complex longitudinal models to investigate the role of a range of factors, investigating their correlation and interaction. This knowledge will be used to develop responsible AI tools and validate them, with particular attention to ensuring they are equitable and do not exacerbate or create bias in the delivery of care. Candidates will develop skills to handle large-scale datasets, longitudinal modelling, handling electronic heath records, and develop their knowledge of AI and machine learning. Candidates are asked to submit a potential project title and a research proposal within this research area.

An academic CV. A research proposal within this research area (maximum 2000 words, excluding bibliography or figures). A cover letter indicating a brief summary of your research interests, any completed research conducted, interests and skills in statistical methods, analyses of large datasets, and coding, and a clear statement of your eligibility for this funding award.

Applications must be received by midnight on30 November 2024. Interviews will be held within a month of the application deadline.

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.