National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

PhD Studentship: Developing digital tools to support a personalised preventative pathway for childrens mental health

University of Cambridge
Cambridge
8 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer (PhD)

Machine Learning Engineer (PhD) (London)

Data Science Actuary (PHD Graduates)

Data Science Actuary (PHD Graduates)

Data Science Actuary (PHD Graduates)

Data Science Actuary (PHD Graduates)

Based within the Timely Research Group, Department of Psychiatry, University of Cambridge

A full scholarship funded through Peterhouse, University of Cambridge

The studentship will be hosted within the Timely Research Group, Department of Psychiatry. The Department has an outstanding international reputation in research, rated the best psychiatry department in the UK and in Europe, and has excelled in the last three Research Assessment Exercises. The University of Cambridge is consistently ranked among the very top universities in the world.

The Timely project aims to develop digitally supported personalised prevention pathways for children's mental health services. Baseline work has been carried out to construct a linked, population-level, multi-agency, longitudinal database including administrative and clinical records from health, education and social care records. A blueprint for a preventative pathway has been developed. This project will take forward the blueprint, refine it with a broad range of stakeholders including children and families, and co-develop detailed specifications for AI-driven digital tools. Particular attention will be placed on taking a responsible AI approach.

We are particularly interested in candidates who would like to use large longitudinal datasets to investigate how heterogeneous factors contribute to differences in neurodevelopmental and mental health conditions. As a part of the PhD, candidates will build complex longitudinal models to investigate the role of a range of factors, investigating their correlation and interaction. This knowledge will be used to develop responsible AI tools and validate them, with particular attention to ensuring they are equitable and do not exacerbate or create bias in the delivery of care. Candidates will develop skills to handle large-scale datasets, longitudinal modelling, handling electronic heath records, and develop their knowledge of AI and machine learning. Candidates are asked to submit a potential project title and a research proposal within this research area.

An academic CV. A research proposal within this research area (maximum 2000 words, excluding bibliography or figures). A cover letter indicating a brief summary of your research interests, any completed research conducted, interests and skills in statistical methods, analyses of large datasets, and coding, and a clear statement of your eligibility for this funding award.

Applications must be received by midnight on30 November 2024. Interviews will be held within a month of the application deadline.

The University actively supports equality, diversity and inclusion and encourages applications from all sections of society.

The University has a responsibility to ensure that all employees are eligible to live and work in the UK.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.