National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

PhD Student Vacancy: Eastbio - iGPS-Pot: Integrating machine learning and traditional genetic modelling to develop an intelligent framework for genomic prediction and selection of complex traits in po

The James Hutton Institute
Dundee
6 months ago
Applications closed

Related Jobs

View all jobs

Lecturer in Software Systems, Artificial Intelligence and Data Engineering

Research Assistant/Associate in Embedded Machine Learning Systems

Senior Research Associate in Machine Learning for Geodesy - 0479-25

Inkfish Principal Medical Research Scientist and appointment as Professor of Digital Health & Health Data Science

Assistant Professor of Data Science in Computer Science (Tenure Track)

Research Associate in AI and Data Science (Fixed term for 2 years)

Background: Potato is a key future food security crop, representing £4.3 billion to the UK economy. Typically, it takes ~10-13 years to breed a successful cultivar, requiring many rounds of intensive selection and field evaluation. Despite intensive breeding efforts, genetic gains for yield and other complex traits have been slow and old varieties are still favoured. The diminished progress is attributed to the large number of traits required for commercial success coupled with potato’s complex genetic architecture and limited genomic breeding resources. Extending recent advancements in genomic prediction (GP) for the complex architecture of potato has the potential to alleviate historical impediments and significantly improve genetic gains amid climate change. Furthermore, the autotetraploid nature of potato makes it ideal to leverage innovative machine learning (ML) and artificial intelligence (AI) approaches well-suited to capturing the complex interactions within the potato genome. 

Aims and Outcomes: We aim to develop an intelligent GP framework which utilises the power of ML and AI along with the interpretability of traditional quantitative genetic models. The hybrid approach will form the basis of our proposed multi-trait toolkit, that will radically enhance potato breeding through optimised parental combinations and early selection (without phenotyping) for target traits. This will lead to rapid improvement in commercial varieties and significant reductions in their time to market, boosting agility in potato breeding programmes to meet crop production challenges (e.g. climate change) for future food security.

Approach: We have developed an array of genomic and phenotypic resources for a large collection of potato lines and an open-source software ecosystem for modelling breeding programmes. These existing tools will enable the project to go beyond current state-of-the-art in potato, providing efficient development in simulation and validation with real data. The project will develop a multi-trait linear mixed model (LMM) approach which integrates ML and AI machinery that will be compared to traditional LMM, ML and AI approaches. Importantly, the proposed approach overcomes the current limitations of ML and AI by providing traditional quantitative genetic parameters (e.g., variance parameters, heritabilities) and measures of uncertainty; allowing breeders to interpret their breeding material, gauge risks associated with their selection decisions, and subsequent inclusion within a selection index.

Training: The student will be trained in many important and multi-disciplinary areas covering genetics, genomics and statistics including state-of-the-art and emerging GP approaches to enhance employability and research capability within both the academic and applied fields of plant genetics and breeding.

The EastBio partnership offers fully-funded competition based studentships. Funding covers Home (UK fees), a stipend at UKRI norm level (£19,327 for 2024/2025) and project costs. Application guidance can be found on the Eastbio website;How to Apply ¦ Biology. Information on UKRI-BBSRC can be found on the UKRI websiteUKRI – UK Research and Innovation

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.