NLP / LLM Scientist - Applied AI ML Senior Associate - Machine Learning Centre of Excellence | [...] (Basé à London)

Jobleads
London
1 month ago
Applications closed

Related Jobs

View all jobs

Senior Data Scientist

Machine Learning Research Scientist - PhD, NLP, LLM

AI Engineer - Machine Learning LLM

AI Engineer - Machine Learning LLM

AI Engineer - Machine Learning LLM

Data Scientist / AI Engineer

NLP / LLM Scientist - Applied AI ML Senior Associate - Machine Learning Centre of Excellence

Job Description

The Machine Learning Center of Excellence invites the successful candidate to apply sophisticated machine learning methods to a wide variety of complex tasks including natural language processing, speech analytics, time series, reinforcement learning and recommendation systems.

The candidate must excel in working in a highly collaborative environment together with the business, technologists and control partners to deploy solutions into production. The candidate must also have a strong passion for machine learning and invest independent time towards learning, researching and experimenting with new innovations in the field. The candidate must have practiced expertise in Deep Learning with hands-on implementation experience and possess strong analytical thinking, a deep desire to learn and be highly motivated.

Job Responsibilities

  • Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community.
  • Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as NLP, speech recognition and analytics, time-series predictions or recommendation systems.
  • Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production.
  • Drive Firm wide initiatives by developing large-scale frameworks to accelerate the application of machine learning models across different areas of the business.


Required qualifications, capabilities, and skills

  • Solid background in NLP or speech recognition and analytics, personalization/recommendation and hands-on experience and solid understanding of machine learning and deep learning methods.
  • PhD in a quantitative discipline, e.g. Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science with reasonable industry experience, or an MS with industry or research experience in the field.
  • Applied experience with machine learning and deep learning toolkits (e.g.: TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas).
  • Ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals.
  • Experience with big data and scalable model training and solid written and spoken communication to effectively communicate technical concepts and results to both technical and business audiences.
  • Scientific thinking with the ability to invent and to work both independently and in highly collaborative team environments.
  • Curious, hardworking and detail-oriented, and motivated by complex analytical problems.


Preferred qualifications, capabilities, and skills

  • Strong background in Mathematics and Statistics and familiarity with the financial services industries and continuous integration models and unit test development.
  • Knowledge in search/ranking, Reinforcement Learning or Meta Learning.
  • Experience with A/B experimentation and data/metric-driven product development, cloud-native deployment in a large scale distributed environment and ability to develop and debug production-quality code.
  • Published research in areas of Machine Learning, Deep Learning or Reinforcement Learning at a major conference or journal.


About MLCOE
The Machine Learning Center of Excellence (MCLOE) team partners across the firm to create and share Machine Learning Solutions for our most challenging business problems. In this role you will work and collaborate with a team comprised of a multi-disciplinary community of experts focused exclusively on Machine Learning. On this team you will work with cutting-edge techniques in disciplines such as Deep Learning and Reinforcement Learning.

About Us

J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law.#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.