Machine Learning Research Scientist - PhD, NLP, LLM

Cambridge
8 months ago
Applications closed

Related Jobs

View all jobs

NLP/LLM Research Scientist (PhD) – Cambridge Hybrid

Research Engineer, Machine Learning - Paris/London/Zurich/Warsaw

Senior NLP & AI Research Scientist

Junior Machine Learning Engineer

Hybrid Research Data Scientist: AI & ML for Finance

Senior RF Data Scientist / Research Engineer

Job Title: Machine Learning Research Scientist
Location: Cambridge / Hybrid
Salary: £depending on experience + benefits

Company Overview: Our client is a pioneering machine learning and artificial intelligence software house, renowned for developing some of the most advanced technologies in the AI domain. The team is composed of mathematicians, engineers, and is led by experienced entrepreneurs known for creating award-winning tech companies.

Job Description: We are seeking a highly skilled Machine Learning Research Scientist to join our innovative team. The ideal candidate will have a PhD in a mathematical, scientific, engineering, or computing subject from a leading UK university or a highly ranked international university, with an outstanding academic background and the highest pass marks.

Key Responsibilities:

  • Conduct cutting-edge research in the fields of Computer Vision, Deep Learning, Machine Learning, Artificial Intelligence, or Natural Language Processing.
  • Develop and implement advanced machine learning models and algorithms.
  • Work with large data sets, including LLMs (Large Language Models) and GANs (Generative Adversarial Networks).
  • Collaborate with a team of mathematicians, engineers, and other researchers to solve complex problems.

    Essential Qualifications:

  • PhD in a relevant field (mathematics, science, engineering, computing) from a top-tier university.
  • Proven track record of published work in areas such as Computer Vision, Deep Learning, Machine Learning, AI, or NLP.
  • Strong mathematical and analytical skills, including knowledge of statistics and probability.
  • Experience with neural network architecture and deep learning techniques.
  • Proficiency in programming languages such as Python and Java.
  • Familiarity with big data and distributed computing.
  • Ability to explore complex mathematical subjects at a deep level.
  • Keen eye for detail and natural problem-solving abilities.

    Additional Information:

  • This position is not fully remote and requires the candidate to live close to the Cambridge area.
  • Adecco is operating as an Employment Agency for this position and is an equal opportunities employer.
  • Your CV will be treated with the strictest confidence, and we will always speak to you before discussing your CV with any potential employer.

    Keywords: PhD, AI, Cambridge, Adecco, LLM, NLP, ML

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.