Medical Data Scientist / Statistician (Full time - Remote Europe)

RetinAI Medical
11 months ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Statistician - Capital One eFinancialCareers

Data Scientist — ML & Feature Engineering (Hybrid)

Senior Statistical Methodology Data Scientist

Informatics Data Science Manager

Strategic Data Scientist: Workforce Modelling for Energy

Senior Data Scientist

About Us

Ikerian AG (formerly RetinAI Medical)is a fast-growing medical device software company headquartered in Bern, Switzerland. Our mission is to enable the right decisions sooner in healthcare, through transformative AI & data management solutions for disease screening and monitoring. Join our diverse team of entrepreneurs, developers, researchers, and commercial experts who are collectively shaping the future of healthcare.

Job Description

As a Medical Data Scientist/Statistician, you will play a key part in supporting the statistical analysis of datasets, specifically focusing on biomarkers to validate and support clinical trials. 
You will collaborate with researchers, applying advanced statistical techniques and data science methodologies to derive meaningful insights that inform clinical decision-making.

Key Responsibilities

  • Working with the Real-World Evidence (RWE), Data Strategy and Commercial teams in the creation and delivery of data specifications for research projects.
  • Working with the engineering and machine learning team on maintaining and improving the data platform which ingests and standardizes data.
  • Providing informatics expertise to the Data Strategy and Commercial team to support data partner interactions.
  • Participating in reviewing quality of incoming data, triaging and resolving issues to ensure data meets RWE team’s needs.
  • Participating in management and improvement of our common data model.
  • Using clinical knowledge to participate in designing and maintaining an automated data quality review process.

Requirements

  • Master’s degree in Statistics, Biostatistics, Data Science, or a related field.
  • PhD/ MBA a plus
  • Excellent verbal and written English communication skills.
  • Reside in a European Country
  • A minimum of 3 years of relevant working experience with bio-statistical projects.
  • A minimum of 3 years worked in healthcare or pharma related fields.
  • Proven experience in statistical analysis and data science, preferably in clinical research or healthcare.
  • Strong proficiency in Python and/or R for data analysis and statistical modeling.
  • Experience with Git, Software Development.
  • Experience in medical dataset analysis, and familiarity with Real-World Evidence and Ophthalmology is a plus.
  • Strong communication and collaboration skills, especially in a multidisciplinary team environment.
  • Experience in a startup or consulting environment is an advantage.
  • Demonstrated entrepreneurial and collaborative mindset.
  • Knowledgeable in industry best practices in biostatistics and clinical studies.
  • Strong analytical and problem-solving abilities, an eye for detail.
  • Ability to work independently and as part of a team.
  • Available to work during Central European Time (CET) business hours.

Benefits

  • A chance to be part of an exceptional team driving innovation in healthcare.
  • A competitive salary in a supportive work environment that fosters work-life balance.
  • Opportunities for professional growth and development in an international setting.
  • A culture of collaboration and inclusion, which is fundamental to our ethos.
  • Occasional travel to conferences, presenting posters and to represent the company.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.

Machine Learning Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Are you considering a career change into machine learning in your 30s, 40s or 50s? You’re not alone. In the UK, organisations across industries such as finance, healthcare, retail, government & technology are investing in machine learning to improve decisions, automate processes & unlock new insights. But with all the hype, it can be hard to tell which roles are real job opportunities and which are just buzzwords. This article gives you a practical, UK-focused reality check: which machine learning roles truly exist, what skills employers really hire for, how long retraining realistically takes, how to position your experience and whether age matters in your favour or not. Whether you come from analytics, engineering, operations, research, compliance or business strategy, there is a credible route into machine learning if you approach it strategically.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.