Marketing Analyst

83data
Southampton
1 month ago
Applications closed

Related Jobs

View all jobs

Data Analyst, AFRS

Data Analysts

Data Analyst

Data Analyst TCL:43552

Data Analyst

Data Analyst

Marketing Analyst - Remote UK


We are seeking a Marketing Data Analyst who is analytical, insightful, and eager to take on a pivotal role in defining the client’s marketing strategy. If you have a proven ability to unearth the compelling stories that data hides, and can leverage these insights to drive successful marketing initiatives, this could be the perfect role for you.



Role Overview:As a Marketing Data Analyst, you will be integral to the marketing team, providing the insights needed to guide strategic decision-making. Your role will involve analysing marketing performance, identifying trends, and translating data into strategic actions that enhance customer acquisition, engagement, and retention.



Key Responsibilities:

  • Data Analysis:Perform detailed analyses across various data sources, including website analytics, marketing campaigns, and CRM systems.
  • Strategy Development:Work in close collaboration with the marketing team to craft and refine effective strategies based on data-driven insights.
  • Reporting and Dashboards:Develop and maintain comprehensive reports and dashboards that highlight key metrics and insights for stakeholders.
  • Campaign Evaluation:Assess the efficacy of marketing campaigns, providing optimisation recommendations.
  • Cross-Functional Collaboration:Ensure alignment across marketing, product, and sales teams to maximise strategic outcomes.
  • Keeping Informed:Remain up-to-date with the latest trends in marketing analytics and data visualisation tools.



Desired Skills and Experience:

  • Analytical Skills:Strong background in data analysis, proficient in tools like GA4, SQL, Looker Studio, and BigQuery.
  • Marketing Knowledge:Deep understanding of modern marketing strategies, particularly within digital campaigns and product-led growth, with a strong preference for candidates who have experience in software or SaaS environments.
  • Communication:Exceptional ability to communicate complex data insights clearly to both technical and non-technical stakeholders.
  • Problem Solving:Proactive in identifying and resolving issues with a solution-focused approach.
  • Teamwork:Excellent collaborative skills, able to work effectively within diverse team settings.



Additional Qualifications (Preferred):

  • Prior experience in SaaS or B2B marketing analytics is highly advantageous.



Rewards and Benefits:

  • Competitive Compensation:We offer competitive salaries and comprehensive benefits packages, including health care, generous holiday allowances, and a home office setup budget.
  • Equity Opportunities:Our client believes in rewarding top performers with share options.
  • Dynamic Work Environment:Enjoy a vibrant culture with regular team-building events, fun activities, and a strong focus on employee wellbeing.
  • Community Engagement:Opportunities for volunteering and community involvement are encouraged and supported.



Work Flexibility and Diversity:The client promotes a remote-first approach, providing equal opportunities to all employees globally. They are committed to creating a diverse and inclusive work environment and welcome applicants who may require specific accommodations to participate fully in the recruitment process.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.