Data Analyst (Graduate Role)

Arsenault
Manchester
1 day ago
Create job alert
About the job Data Analyst (Graduate Role)

We are looking to hire a data analyst to join our data team. You will take responsibility for managing our master data set, developing reports, and troubleshooting data issues. To do well in this role you need a very fine eye for detail, experience as a data analyst, and a deep understanding of the popular data analysis tools and databases. As a data analyst you will gather and scrutinise data using specialist tools to generate information that helps others make decisions. You will respond to questions about data and look for trends, patterns and anomalies within it.


Key Responsibilities

  • develop records management processes and policies
  • identify areas to increase efficiency and automation of processes
  • set up and maintain automated data processes
  • identify, evaluate and implement external services and tools to support data validation and cleansing
  • produce and track key performance indicators
  • develop and support reporting processes
  • monitor and audit data quality
  • liaise with internal and external clients to fully understand data content
  • gather, understand and document detailed business requirements using appropriate tools and techniques
  • design and carry out surveys and analyse survey data
  • manipulate, analyse and interpret complex data sets relating to the employer's business
  • prepare reports for internal and external audiences using business analytics reporting tools
  • create data dashboards, graphs and visualisations
  • provide sector and competitor benchmarking
  • mine and analyse large datasets, draw valid inferences and present them successfully to management using a reporting tool

Requirements

  • excellent numerical and analytical skills
  • knowledge of data analysis tools - you don't need to know all of them at entry level, but you should show advanced skills in Excel and the use of at least one relational database
  • familiarity with other relational databases (e.g. MS Access)
  • knowledge of data modelling, data cleansing, and data enrichment techniques
  • Hadoop open-source data analytics
  • Google Analytics, SEO, keyword analysis and web analytics aptitude, for marketing analyst roles
  • the capacity to develop and document procedures and workflows
  • the ability to carry out data quality control, validation and linkage
  • an understanding of data protection issues
  • an awareness and knowledge of industry-specific databases and data sets
  • experience of statistical methodologies and data analysis techniques
  • the ability to produce clear graphical representations and data visualisations


#J-18808-Ljbffr

Related Jobs

View all jobs

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Data Analyst

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.