Machine Learning Research Scientist

Tothemoon
4 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Performance Engineer

Senior Machine Learning Engineer

Principal Machine Learning Scientist

Machine Learning Engineer

Machine Learning Researcher

Machine Learning Consultant - Experienced

About Tothemoon Tothemoon is a user-centric, multiservice digital assets trading platform. At Tothemoon, we prioritize what matters most in finance: reliability. Whether it’s buying, selling, exchanging, or investing in cryptocurrencies, you can trust us to protect your financial interests and propel you towards a prosperous future. Join a rapidly growing community of users who choose Tothemoon for their digital transactions. One of our products is a  fast-growing, crypto-native investment fund focused entirely on DeFi. We see DeFi as a dynamic space with fewer competitive players, where traditional finance is slow to adapt due to regulatory constraints. This creates a unique opportunity to disrupt the market with innovative, AI-driven trading systems. We’re on a mission to build the future of trading in DeFi by creating AI-driven systems that trade autonomously and scale with the market, reducing human involvement. Machine learning will be at the heart of our trading strategies, pushing the boundaries of quantitative research and providing smarter, more scalable solutions. Note: No experience in trading or DeFi is required. We’re a tech company at our core and are looking for candidates with experience in fast-moving, data-driven environments. What You’ll Do: We’re looking for an ML Research Scientist with expertise in time series modeling and forecasting. If you’ve developed models for forecasting traffic or predictive analytics in industries like e-commerce or social media, this is a great fit. You’ll focus on building new machine learning models from scratch, using time series analysis to predict and model dynamic, decentralized markets. Your work will help replace traditional human-driven quantitative models with autonomous AI agents that learn and adapt in real-time. If you're excited about developing cutting-edge models and shaping the future of DeFi trading, this is a unique opportunity. Why Join Us? Competitive salary  that reflects your value. Blended work  – work from home or at our amazing office with the breathtaking sea view.  Paid holidays  to relax and recharge. Opportunities for  continuous learning  and  career growth . A dynamic, inclusive team that values creativity, humor, and  out-of-the-box  thinking. We offer competitive compensation, with the possibility of profit-sharing based on your contributions to building and refining our trading strategies. As one of the first ML Engineers or ML Research Scientists to join the team, you’ll have the opportunity to shape our vision and share in the success as we grow. At Tothemoon, we embrace diversity, equity, and inclusion. No matter who you are or where you’re from, we encourage you to bring your talents to the table. We assess candidates purely on their professional skills and experience. Are you ready to help us shape the future of crypto? Apply today! Powered by JazzHR

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.