Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Machine Learning Manager

Depop
London
3 weeks ago
Create job alert

Machine Learning Manager

Team: Engineering & Data

Location: Depop - London

Company Description

Depop is the community-powered circular fashion marketplace where anyone can buy, sell and discover desirable secondhand fashion. With a community of over 35 million users, Depop is on a mission to make fashion circular, redefining fashion consumption. Founded in 2011, the company is headquartered in London, with offices in New York and Manchester, and in 2021 became a wholly-owned subsidiary of Etsy. Find out more at www.depop.com Our mission is to make fashion circular and to create an inclusive environment where everyone is welcome, no matter who they are or where they’re from. Just as our platform connects people globally, we believe our workplace should reflect the diversity of the communities we serve. We thrive on the power of different perspectives and experiences, knowing they drive innovation and bring us closer to our users. We’re proud to be an equal opportunity employer, providing employment opportunities without regard to age, ethnicity, religion or belief, gender identity, sex, sexual orientation, disability, pregnancy or maternity, marriage and civil partnership, or any other protected status. We’re continuously evolving our recruitment processes to ensure fairness and are open to accommodating any needs you might have. If, due to a disability, you need adjustments to complete the application, please let us know by sending an email with your name, the role to which you would like to apply, and the type of support you need to complete the application to . For any other non-disability related questions, please reach out to our Talent Partners.

Life is about creating. That's why we're home to over 30 million artists, stylists, designers, sneakerheads — and you? We're the community-powered, circular-minded marketplace changing the world of online fashion. Now it's time to get inspired at Depop.

Responsibilities

Job description

Role

Depop is looking for a talented ML Manager to lead our Search ML team in the UK. In this role, you will lead a team of ML Scientists, building state-of-the-art models to power Depop’s search engine.

Responsibilities

You will:

Lead and mentor a team of ML Scientists, setting the vision and fostering an inclusive, experiment-driven culture.

Partner with the team’s leads (Product Manager, Backend EM, Data Analyst) to translate business questions into an actionable search-ML roadmap that moves GMV, conversion and engagement.

Collaborate with the MLOps team to embed best practices and efficient ML workflows - covering CI/CD, feature management, monitoring, etc..

Collaborate with other ML teams, sharing models, tooling and insights, particularly in areas like Recommendations and Ranking

Stay on the pulse of new research in NLP, CV and multimodal retrieval, champion responsible-AI best practices, and present findings to technical and non-technical audiences.

Qualifications

Significant experience (7+ years) working in Machine Learning, delivering models to solve industry-scale problems, and 2 + years leading teams of ML Scientists and/or ML Engineers

Deep expertise in search and recommendation techniques: semantic embeddings, learning-to-rank, personalisation algorithms, etc.

Proven track record of delivering ML modes end-to-end: data strategy, training, deployment and monitoring , using Python, Spark and major deep-learning frameworks (e.g. PyTorch or TensorFlow)

Experience working in cloud and MLOps environments

Strong command of experimental design, offline metrics and online A/B testing to drive product strategy

Excellent collaboration and communication skills, able to translate complex ML concepts seamlessly for PMs, engineers and executives

Nice to have

Experience with AWS & Databricks

Experience with OpenSearch

Related Jobs

View all jobs

Machine Learning Manager

Senior Machine Learning Engineering Manager

Engineering Manager – Machine Learning

Engineering Manager, Machine Learning Platform

Machine Learning & Simulation Modelling Specialist

Machine Learning & Simulation Modelling Specialist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Future of Machine Learning Jobs: Careers That Don’t Exist Yet

Machine learning (ML) has quickly become one of the most transformative forces in modern technology. What began as a subset of artificial intelligence—focused on algorithms that learn from data—has grown into a foundational capability across industries. From voice assistants and recommendation systems to fraud detection and predictive healthcare, machine learning underpins countless innovations shaping daily life. In the UK, demand for ML professionals has surged. Financial services, healthcare providers, retailers, and tech start-ups are investing heavily in ML talent. Roles like Machine Learning Engineer, Data Scientist, and AI Researcher are among the most sought-after and best-paid in the tech sector. Yet we are still only at the start. Advances in generative AI, quantum computing, edge intelligence, and ethical governance are reshaping the field. Many of the most critical machine learning jobs of the next 10–20 years don’t exist yet. This article explores why new careers will emerge, the kinds of roles likely to appear, how today’s jobs will evolve, why the UK is well positioned, and how professionals can prepare.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.