Machine Learning Engineer, Trilogy (Remote) - £77,000/year GBP

Crossover
Norwich
6 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Ready to leverage your mastery of LLMs to drive productivity? At Trilogy, we're opening doors to an exceptional tech career, welcoming those who've honed their AI skills to elevate their expertise in a dynamic environment. We're offering a rare chance where your primary focus will be to further expand your proficiency in LLMs.

In an industry often filled with more buzzwords than tangible progress, Trilogy stands out as a hub of genuine innovation. Our focus is on practical, real-world applications aimed at reshaping industries. Imagine creating AI-driven tools that streamline workflow, automate tasks, or enhance decision-making processes, all to significantly boost productivity.

Your mandate? Harnessing LLMs to revolutionize how businesses operate, improving efficiency and effectiveness. You'll be architecting solutions that integrate AI seamlessly, making intricate processes more accessible and refining workflows for maximum output. Here, you won't be lost in bureaucratic hurdles or pitching ideas into the void. Instead, you'll witness the direct impact of your efforts, as your work directly influences the evolution of productivity tools.

Ready to unleash your expertise and become a force of change? Let's explore if you're the catalyst we're seeking for this exciting opportunity!


What you will be doing

  • Designing and building high-quality AI automations to streamline processes, enhance productivity, and deliver robust, scalable solutions across diverse applications
  • Experimenting with state-of-the-art AI tools like GPT-4 Vision and Amazon CodeWhisperer, integrating them into our developmental process to assess and enhance their utility
  • Evaluating and optimizing the implementation of AI solutions across various infrastructures, including AWS, to ensure seamless performance and integration


What you will NOT be doing

  • Traditional coding - our AI does the heavy lifting, freeing you to innovate and strategize
  • Being stuck on repetitive tasks - no two problems are the same


Key Responsibilities

Architecting and deploying sophisticated, fully-automated AI systems that require zero human intervention for a truly scalable impact


Candidate Requirements

  • Advanced generative AI proficiency (i.e., use of multiple AI tools, ability to automate workflows and custom GPTs); if you've only used LLMs for research, learning, brainstorming, or content generation, that will be deemed insufficient
  • At least 3 years of professional work experience
  • Proficiency in Python and API integration
  • Proficiency in AWS


Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.