Machine Learning Engineer II, Content Understanding

Spotify
London
7 months ago
Applications closed

Related Jobs

View all jobs

Applied Scientist II (Machine Learning), ITA - Automated Performance Evaluation

Machine Learning Engineer

Machine Learning Engineer( Real time Data Science Applications)

Machine Learning Engineer

Machine Learning Engineer - Health Tech Start Up

Machine Learning Engineer

As Spotify grows its video catalog, understanding and classifying visual content in our catalog becomes very important to support moderation, search and recommendation use cases. We are a small, cross-functional team of Machine Learning Engineers and Data Engineers leveraging state of the art machine learning solely focused on building and deploying visual understanding models. Delivering the best Spotify experience possible. To as many people as possible. In as many moments as possible. That’s what the Experience team is all about. We use our deep understanding of consumer expectations to enrich the lives of millions of our users all over the world, bringing the music and audio they love to the devices, apps and platforms they use every day. Know what our users want? Join us and help Spotify give it to them. As a Machine Learning Engineer in our Content Understanding teams, you will help define and build ML deployed at scale in support of a broad range of use cases driving value in media and catalog understanding.

What You'll Do

Build production systems that enrich and improve our listeners’ experience on the platform Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development Prototype new approaches and production-ize solutions at scale for our hundreds of millions of active users Help drive optimization, testing, and tooling to improve quality Perform data analysis to establish baselines and inform product decisions Collaborate with a cross functional agile team spanning design, data science, product management, and engineering to build new technologies and features

Who You Are

You have professional experience in applied machine learning Extensive experience working in a product and data-driven environment (Python, Scala, Java, SQL, or C++, with Python experience required) and cloud platforms (GCP or AWS) You have some hands-on experience implementing or prototyping machine learning systems at scale  You have experience architecting data pipelines and are self-sufficient in getting the data you need to build and evaluate models, using tools like Dataflow, Apache Beam, or Spark You care about agile software processes, data-driven development, reliability, and disciplined experimentation You have experience and passion for fostering collaborative teamsExperience with TensorFlow, pyTorch, and/or Google Cloud Platform is a plus Experience with building data pipelines and getting the data you need to build and evaluate your models, using tools like Apache Beam / Spark is a plus

Where You'll Be

You will work out of our London office

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote Machine Learning Jobs: Finding Balance Beyond the Big Cities

Over the past decade, machine learning (ML) has transformed from a niche research domain into a pervasive technology underpinning everything from recommendation systems and voice assistants to financial forecasting and autonomous vehicles. Historically, the UK’s major tech hubs—particularly London—have been magnets for top ML talent and corporate headquarters. However, remote work has become mainstream, and many ML professionals are realising they can excel in their field while living far beyond the city limits. At MachineLearningJobs.co.uk, we’ve observed a growing interest in positions that allow for a rural lifestyle or a coastal environment, often reflected in search terms like “ML remote countryside” or “tech jobs by the sea.” This surge is no coincidence. Flexible work policies, better rural broadband, and the nature of machine learning tasks—much of which can be done through cloud platforms—are bringing new opportunities to those who wish to swap urban hustle for fresh air and scenic views. Whether you’re a data scientist, ML engineer, researcher, or product manager, a rural or seaside move could reinvigorate your work-life balance. In this article, we’ll unpack why rural-remote ML jobs are on the rise, how you can navigate the challenges of leaving the city, and what you need to do to thrive in a machine learning career beyond the M25. If you’ve dreamt of looking up from your laptop to rolling fields or ocean waves, keep reading—your rural ML role might be closer than you think.

Quantum-Enhanced Machine Learning—Propelling AI into the Next Frontier

Machine learning (ML) has revolutionised how we interpret data, build predictive models, and create intelligent applications. From recommendation engines and self-driving cars to advanced genomics and natural language processing, ML solutions are integral to nearly every corner of modern life. However, as data complexity and model size continue to skyrocket, the computational demands placed on ML systems grow in tandem—often pushing even high-performance classical computers to their limits. In recent years, quantum computing has emerged as a tantalising solution to these challenges. Unlike traditional digital systems, quantum computers exploit quantum mechanics—superposition and entanglement—to process information in ways that defy conventional logic. As these machines mature, they promise exponential speed-ups for certain tasks, potentially reshaping how we approach AI and data-intensive challenges. What does this mean for machine learning? Enter quantum-enhanced ML, a new frontier where quantum processors and classical ML frameworks unite to accelerate model training, tackle high-dimensional data, and solve complex optimisation tasks more efficiently. In this article, we will: Unpack the current state of machine learning, highlighting key bottlenecks. Provide a concise overview of quantum computing—why it’s radical and how it differs from classical technology. Examine potential breakthroughs in quantum-enhanced ML, including real-world use cases and technical approaches. Explore the roles and skill sets that will define this quantum-AI era, with guidance on how to prepare. Discuss the roadblocks (like hardware maturity and ethical concerns) and how they might be addressed in the years to come. If you’re a machine learning engineer, data scientist, or simply an AI enthusiast fascinated by the next wave of computational innovation, read on—quantum computing could become an integral part of your future toolkit, opening up job opportunities and reimagining what ML can achieve.

Machine Learning Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Machine learning (ML) has become the beating heart of modern tech innovation, powering breakthroughs in healthcare, finance, cybersecurity, robotics, and more. Across the United Kingdom, this surge in ML-driven solutions is fueling the success of countless start-ups—and spurring demand for talented machine learning engineers, data scientists, and related professionals. If you’re eager to join a high-growth ML company or simply want to keep tabs on the latest trends, this Q3 2025 Investment Tracker will guide you through the newly funded UK start-ups pushing the boundaries of ML. In this article, we’ll highlight key developments from Q3 2025, delve into the most promising newly funded ventures, and shed light on the machine learning roles they’re urgently seeking to fill. Plus, we’ll show you how to connect with these employers via MachineLearningJobs.co.uk, a dedicated platform for ML job seekers. Let’s dive in!