National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

Elecnor Deimos
Harwell
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

DEIMOS is looking for an engineer to join the Computer Vision/Artificial Intelligence (CV/AI) Competence Centre of the Avionics Business Unit, Flight Systems Directorate.

This role focuses on supporting Deimos’ AI/CV flight systems team in researching, developing, deploying and scaling our computer vision portfolio for onboard processing applications in Space. You will work on Machine Learning projects and products throughout their lifecycle – from early-phase R&D activities to productization and deployment.

The work of the AI/CV Competence Centre is oriented to the design, development, specification, and validation of Computer Vision solutions for embedded flight segment applications, including real-time advanced onboard data processing and intelligent decision making.

This preferred locations for this role are either Harwell, UK, or Madrid, Spain, although other Deimos sites may also be considered.

Duties:

The main responsibilities are:

Research, design, implement, and deploy machine learning models and algorithms that address specific challenges and opportunities related to on-board processing in Space. Collaborate with team-members and clients across Europe to understand project requirements, objectives, and constraints. Process and analyse datasets to extract meaningful insights and features for model development. Design, implement and maintain industry-standard MLOps infrastructure for new and existing ML products Optimize and standardize ML training and validation processes, data warehousing and pipelines.

Education:

Master’s or Ph.D. in Computer Science, Machine Learning, Data Science, or a related field.

Professional Experience:

The position will be tailored to the level of experience; practical industry experience deploying and maintaining ML systems in production would be viewed very positively.

Technical Requirements:

Required:

Strong foundation in machine learning algorithms, statistics, and data structures within relevant technical projects. Proficiency in programming languages, frameworks, and tools, such as Python, TensorFlow, PyTorch. Experience with data preprocessing, feature engineering, and model evaluation techniques.

Highly Desirable:

Experience working on aerospace-related projects Experience deploying MLOps solutions and working within CI/CD frameworks Experience with Linux systems and cloud infrastructure (AWS, Azure, etc.) Experience developing embedded ML applications (C++, CUDA, TensorRT)

Language Skills:

Good level of English, spoken and written

Personal Skills:

Capability to integrate in and work within a trans-European team Solid organisational, analytical and reporting skills Autonomy and willingness to take initiative Excellent communication skills Energetic, positive team player mentality

Ref.:

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.