Machine Learning Engineer

Tadaweb
City of London
4 days ago
Create job alert

Tadaweb is a pioneering technology company with roots in Luxembourg and a growing global presence, with offices in the United Kingdom, France, and the United States. For over 13 years, we’ve been on a mission to make the world a safer place by empowering analysts with the tools they need to access the right information at the right time. Our cutting-edge SaaS platform revolutionizes PAI and OSINT investigations, making them faster, smarter, and more effective, all while adhering to the highest ethical standards by relying solely on publicly available information and supporting our clients’ policies. Renowned for our “nothing is impossible” ethos, we prioritize trust, transparency, and innovation in everything we do.


We are looking for a Machine Learning Engineer with Data Engineering expertise to help scale our platform. In this hybrid role, you’ll design data pipelines, develop ML models, and work across data and AI systems to enhance our platform’s capabilities. If you thrive in a collaborative, fast-moving environment and want to make a real-world impact, we’d love to hear from you!


Scope of Work:

Machine Learning Engineering

  • Develop, maintain, and optimize scalable data pipelines & machine learning models based on key metrics for scalability, reliability, and real-world impact.
  • Build and maintain end-to-end ML pipelines, including data preprocessing, model training, deployment, and monitoring.
  • Work closely with cross-functional teams to integrate ML models into our SaaS platform for PAI and OSINT investigations.

Data Engineering

  • Develop, maintain, and optimize scalable data pipelines for ingesting, processing, and storing large volumes of data.
  • Ensure data quality, consistency, and availability to support ML workflows.
  • Work with ELT processes and implement Medallion (Bronze/Silver/Gold) architecture to structure and optimize data transformation.
  • Align data infrastructure with business needs and product strategy for PAI and OSINT.

System Optimization & Support

  • Monitor, test, and troubleshoot data and ML systems for performance improvements.
  • Recommend and implement enhancements to data pipelines, ML workflows, and system reliability.
  • Ensure seamless integration of new ML models and data-driven features into production.


Your Profile:

  • Experience in both data engineering and machine learning, with a strong portfolio of relevant projects.
  • Track record of delivering end-to-end ML solutions integrated into SaaS products
  • Proficiency in Python with libraries like TensorFlow, PyTorch, or Scikit-learn for ML, and Pandas, PySpark, or similar for data processing.
  • Experience designing and orchestrating data pipelines with tools like Apache Airflow, Spark, or Kafka.
  • Strong understanding of SQL, NoSQL, and data modeling.
  • Familiarity with cloud platforms (AWS, Azure, GCP) for deploying ML and data solutions.
  • Knowledge of MLOps practices and tools, such as MLflow or Kubeflow.
  • Strong problem-solving skills, with the ability to troubleshoot both ML models and data systems.
  • A collaborative mindset and ability to work in a fast-paced, small team environment.


You get bonus points if you have any of the following:

  • Experience working with geospatial data or network graph analysis.
  • Experience with CI/CD for ML and data workflows
  • Familiarity with PAI and OSINT tools and methodologies.
  • Hands-on experience with containerization technologies like Docker.
  • Understanding of ethical considerations in AI, data privacy, and responsible machine learning.


Our Offer:

  • The opportunity to join a growing tech company, with strong product-market fit and an ambitious roadmap
  • The chance to join a human-focused company that genuinely cares about its employees and core values.
  • A focus on performance of the team, not hours at the desk.
  • A social calendar including family parties, games nights, annual offsites, end of the year events and more, with an inclusive approach for both younger professionals and parents.


Tadaweb is an equal opportunities employer, and we strive to have a team with diverse perspectives, experiences and backgrounds.


Our culture:

Our company culture is driven by the core values of family first, nothing is impossible and work hard, play harder. We provide a healthy and positive culture that cares about employee wellbeing by creating a great workplace and investing our employees learning and development. Our leaders aspire to the philosophies of extreme ownership, and servant leadership.

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer - London

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.