Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer, Enterprise Research London, UK

Scale AI, Inc.
City of London
1 week ago
Create job alert

AI is becoming vitally important in every function of our society. At Scale, our mission is to accelerate the development of AI applications. For 8 years, Scale has been the leading AI data foundry, helping fuel the most exciting advancements in AI, including generative AI, defense applications, and autonomous vehicles. With our recent Series F round, we’re accelerating the usage of frontier data and models by building complex agents for enterprises around the world through our Scale Generative AI Platform (SGP).

The SGP ML team works on the front lines of this AI revolution. We interface directly with clients to build cutting edge products using the arsenal of proprietary research and resources developed at Scale. As an ML Engineer, you’ll work with clients to train ML models to satisfy their business needs. Your work will range from training next-generation AI cybersecurity firewall LLMs to training foundation genomic models making predictions about life-saving drug proteins. Having a deep curiosity about the hardest questions about LLMs will also motivate various research opportunities on how to apply ML to the forefront of enterprise data. If you are excited about shaping the future of the modern AI movement, we would love to hear from you!

You will:
  • Train state of the art models, developed both internally and from the community, in production to solve problems for our enterprise customers.
  • Work with product and research teams to identify opportunities for ongoing and upcoming services.
  • Explore approaches that integrate human feedback and assisted evaluation into existing product lines.
  • Create state of the art techniques to integrate tool-calling into production-serving LLMs.
  • Work closely with customers - some of the most sophisticated ML organizations in the world - to quickly prototype and build new deep learning models targeted at multi-modal content understanding problems.
Ideally you’d have:
  • At least 1-3 years of model training, deployment and maintenance experience in a production environment
  • Strong skills in NLP, LLMs and deep learning
  • Solid background in algorithms, data structures, and object-oriented programming
  • Experience working with a cloud technology stack (eg. AWS or GCP) and developing machine learning models in a cloud environment
  • Experience building products with LLMs including knowing the ins and outs of evaluation, experimentation, and designing solutions to get the most of the models
  • PhD or Masters in Computer Science or a related field
Nice to haves:
  • Experience in dealing with large scale AI problems, ideally in the generative-AI field
  • Demonstrated expertise in large vision-language models for diverse real-world applications, e.g. classification, detection, question-answering, etc.
  • Published research in areas of machine learning at major conferences (NeurIPS, ICML, EMNLP, CVPR, etc.) and/or journals
  • Strong high-level programming skills (e.g., Python), frameworks and tools such as DeepSpeed, Pytorch lightning, kubeflow, TensorFlow, etc.
  • Strong written and verbal communication skills to operate in a cross functional team environment


#J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, Open-Source Software - Paris/London

Founding Machine Learning Engineer / YC Start-up / £140,000 - £160,000

Founding Machine Learning Engineer / YC Start-up / £140,000 - £160,000

Staff Machine Learning Engineer

Applied AI, Senior/Staff Forward Deployed Machine Learning Engineer - EMEA

Research Engineer, Machine Learning - Paris/London

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.