Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Engineer

Barclays UK
Glasgow
2 days ago
Create job alert

Join Barclays as a Senior Data Engineer, where you’ll be responsible for designing, building, and optimizing data pipelines and frameworks that power the Enterprise Data Platform across AWS, Azure, and on-premises environments. This role requires strong hands-on engineering skills in data ingestion, transformation, orchestration, and governance, ensuring high-quality, secure, and scalable data solutions.

To be successful, you should have:

  • Data Pipeline Development & Orchestration – Expertise in building robust ETL/ELT pipelines using tools such as Apache Airflow (Astronomer), dbt/PySpark, Python, AWS Glue, Lambda, Athena, Snowflake, and Databricks.
  • Data Transformation & Quality – Strong experience with dbt Core for transformations and testing, and in implementing data quality frameworks (e.g., dbt Expectations).
  • Cloud & Hybrid Data Engineering – Hands-on experience with cloud-native services (AWS, Azure) and on-premises systems, including storage, compute, and data warehousing (e.g., Snowflake, Redshift).

Other highly valued skills include:

  • Metadata & Governance Tools – Familiarity with OpenMetadata, Alation, or similar tools for cataloging, lineage, and governance.
  • DevOps & CI/CD for Data – Experience using GitHub Actions or similar tools for version control, CI/CD, and infrastructure-as-code for data pipelines.
  • Observability & Cost Optimization – Knowledge of monitoring frameworks and FinOps practices for efficient resource utilization.

You may be assessed on the key critical skills relevant for success in role, such as risk and controls, change and transformation, business acumen strategic thinking and digital and technology, as well as job-specific technical skills.

This role is based in Glasgow.

Purpose of the role

To build and maintain the systems that collect, store, process, and analyse data, such as data pipelines, data warehouses and data lakes to ensure that all data is accurate, accessible, and secure.

Accountabilities

  • Build and maintenance of data architectures pipelines that enable the transfer and processing of durable, complete and consistent data.
  • Design and implementation of data warehoused and data lakes that manage the appropriate data volumes and velocity and adhere to the required security measures.
  • Development of processing and analysis algorithms fit for the intended data complexity and volumes.
  • Collaboration with data scientist to build and deploy machine learning models.

Assistant Vice President Expectations

  • To advise and influence decision making, contribute to policy development and take responsibility for operational effectiveness. Collaborate closely with other functions/ business divisions.
  • Lead a team performing complex tasks, using well developed professional knowledge and skills to deliver on work that impacts the whole business function. Set objectives and coach employees in pursuit of those objectives, appraisal of performance relative to objectives and determination of reward outcomes
  • If the position has leadership responsibilities, People Leaders are expected to demonstrate a clear set of leadership behaviours to create an environment for colleagues to thrive and deliver to a consistently excellent standard. The four LEAD behaviours are: L – Listen and be authentic, E – Energise and inspire, A – Align across the enterprise, D – Develop others.
  • OR for an individual contributor, they will lead collaborative assignments and guide team members through structured assignments, identify the need for the inclusion of other areas of specialisation to complete assignments. They will identify new directions for assignments and/ or projects, identifying a combination of cross functional methodologies or practices to meet required outcomes.
  • Consult on complex issues; providing advice to People Leaders to support the resolution of escalated issues.
  • Identify ways to mitigate risk and developing new policies/procedures in support of the control and governance agenda.
  • Take ownership for managing risk and strengthening controls in relation to the work done.
  • Perform work that is closely related to that of other areas, which requires understanding of how areas coordinate and contribute to the achievement of the objectives of the organisation sub-function.
  • Collaborate with other areas of work, for business aligned support areas to keep up to speed with business activity and the business strategy.
  • Engage in complex analysis of data from multiple sources of information, internal and external sources such as procedures and practises (in other areas, teams, companies, etc).to solve problems creatively and effectively.
  • Communicate complex information. 'Complex' information could include sensitive information or information that is difficult to communicate because of its content or its audience.
  • Influence or convince stakeholders to achieve outcomes.

All colleagues will be expected to demonstrate the Barclays Values of Respect, Integrity, Service, Excellence and Stewardship – our moral compass, helping us do what we believe is right. They will also be expected to demonstrate the Barclays Mindset – to Empower, Challenge and Drive – the operating manual for how we behave.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Senior Data Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.

Machine Learning Team Structures Explained: Who Does What in a Modern Machine Learning Department

Machine learning is now central to many advanced data-driven products and services across the UK. Whether you work in finance, healthcare, retail, autonomous vehicles, recommendation systems, robotics, or consumer applications, there’s a need for dedicated machine learning teams that can deliver models into production, maintain them, keep them secure, efficient, fair, and aligned with business objectives. If you’re hiring for or applying to ML roles via MachineLearningJobs.co.uk, this article will help you understand what roles are typically present in a mature machine learning department, how they collaborate through project lifecycles, what skills and qualifications UK employers look for, what the career paths and salaries are, current trends and challenges, and how to build an effective ML team.