National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer, Content Understanding

Spotify AB
London
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer, Enterprise (Basé à London)

Machine Learning Engineer, Enterprise Research London, UK (Basé à London)

Machine Learning Engineer, Enterprise

Machine Learning Engineer, Enterprise (Basé à London)

Machine Learning Engineer - User Behaviour (Basé à London)

Machine Learning Engineer, Amazon Studios AI Lab

Delivering the best Spotify experience possible. To as many people as possible. In as many moments as possible. That’s what the Experience team is all about. We use our deep understanding of consumer expectations to enrich the lives of millions of our users all over the world, bringing the music and audio they love to the devices, apps and platforms they use every day. Know what our users want? Join us and help Spotify give it to them.

Location

  • London

Job type

Permanent

As a Machine Learning Engineer in our Content Understanding teams, you will help define and build ML deployed at scale in support of a broad range of use cases driving value in media and catalog understanding.

Here are some examples of the work you may support:

  • Audio fingerprinting to understand what music is played in podcasts enabling musicians to get royalties
  • Video and image tagging to understand what is happening in any video on Spotify for moderation and recommendations
  • Audiobook Author attribution using graph ML approaches for search and recommendations
  • Categorizing tracks in the catalog to know which are functional content or music tracks leveraged in royalty calculations and in search and recommendations

Our teams are composed of product, machine learning, data and backend engineers, and subject matter experts who average 11 years behind the scenes in the music industry.

We are looking for a Machine Learning Engineer to help us define and build Spotify’s capabilities in this area. Our team expands the state of the art in AI-based machine technology, which enables intelligent, efficient, and intuitive ways to search, re-use, explore or process metadata. You will use world-class engineering and machine learning techniques on real-world, internal, and external big data to directly impact the evolution of our music catalog.

What Youll Do

  • Build production systems that enrich and improve our listeners’ experience on the platform
  • Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development
  • Prototype new approaches and production-ize solutions at scale for our hundreds of millions of active users
  • Help drive optimization, testing, and tooling to improve quality
  • Perform data analysis to establish baselines and inform product decisions
  • Collaborate with a cross functional agile team spanning design, data science, product management, and engineering to build new technologies and features

Who You Are

  • You have professional experience in applied machine learning
  • Extensive experience working in a product and data-driven environment (Python, Scala, Java, SQL, or C++, with Python experience required) and cloud platforms (GCP or AWS)
  • You have some hands-on experience implementing or prototyping machine learning systems at scale
  • You have experience architecting data pipelines and are self-sufficient in getting the data you need to build and evaluate models, using tools like Dataflow, Apache Beam, or Spark
  • You care about agile software processes, data-driven development, reliability, and disciplined experimentation
  • You have experience and passion for fostering collaborative teams
  • Experience with TensorFlow, pyTorch, and/or Google Cloud Platform is a plus
  • Experience with building data pipelines and getting the data you need to build and evaluate your models, using tools like Apache Beam / Spark is a plus

Where Youll Be

  • This role is based in London (UK)
  • We offer you the flexibility to work where you work best! There will be some in person meetings, but still allows for flexibility to work from home. We ask that you come in 3 times per week.

Extensive learning opportunities, through our dedicated team, GreenHouse.

Flexible share incentives letting you choose how you share in our success.

Global parental leave, six months off - fully paid - for all new parents.

All The Feels, our employee assistance program and self-care hub.

Flexible public holidays, swap days off according to your values and beliefs.

Learn about life at Spotify

You are welcome at Spotify for who you are, no matter where you come from, what you look like, or what’s playing in your headphones. Our platform is for everyone, and so is our workplace. The more voices we have represented and amplified in our business, the more we will all thrive, contribute, and be forward-thinking! So bring us your personal experience, your perspectives, and your background. It’s in our differences that we will find the power to keep revolutionizing the way the world listens.

Spotify transformed music listening forever when we launched in 2008. Our mission is to unlock the potential of human creativity by giving a million creative artists the opportunity to live off their art and billions of fans the chance to enjoy and be passionate about these creators. Everything we do is driven by our love for music and podcasting. Today, we are the world’s most popular audio streaming subscription service with a community of more than 500 million users.

J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.