Machine Learning Engineer, Content Understanding

Spotify AB
London
1 week ago
Create job alert

Delivering the best Spotify experience possible. To as many people as possible. In as many moments as possible. That’s what the Experience team is all about. We use our deep understanding of consumer expectations to enrich the lives of millions of our users all over the world, bringing the music and audio they love to the devices, apps and platforms they use every day. Know what our users want? Join us and help Spotify give it to them.

Location

  • London

Job type

Permanent

As a Machine Learning Engineer in our Content Understanding teams, you will help define and build ML deployed at scale in support of a broad range of use cases driving value in media and catalog understanding.

Here are some examples of the work you may support:

  • Audio fingerprinting to understand what music is played in podcasts enabling musicians to get royalties
  • Video and image tagging to understand what is happening in any video on Spotify for moderation and recommendations
  • Audiobook Author attribution using graph ML approaches for search and recommendations
  • Categorizing tracks in the catalog to know which are functional content or music tracks leveraged in royalty calculations and in search and recommendations

Our teams are composed of product, machine learning, data and backend engineers, and subject matter experts who average 11 years behind the scenes in the music industry.

We are looking for a Machine Learning Engineer to help us define and build Spotify’s capabilities in this area. Our team expands the state of the art in AI-based machine technology, which enables intelligent, efficient, and intuitive ways to search, re-use, explore or process metadata. You will use world-class engineering and machine learning techniques on real-world, internal, and external big data to directly impact the evolution of our music catalog.

What Youll Do

  • Build production systems that enrich and improve our listeners’ experience on the platform
  • Contribute to designing, building, evaluating, shipping, and refining Spotify’s product by hands-on ML development
  • Prototype new approaches and production-ize solutions at scale for our hundreds of millions of active users
  • Help drive optimization, testing, and tooling to improve quality
  • Perform data analysis to establish baselines and inform product decisions
  • Collaborate with a cross functional agile team spanning design, data science, product management, and engineering to build new technologies and features

Who You Are

  • You have professional experience in applied machine learning
  • Extensive experience working in a product and data-driven environment (Python, Scala, Java, SQL, or C++, with Python experience required) and cloud platforms (GCP or AWS)
  • You have some hands-on experience implementing or prototyping machine learning systems at scale
  • You have experience architecting data pipelines and are self-sufficient in getting the data you need to build and evaluate models, using tools like Dataflow, Apache Beam, or Spark
  • You care about agile software processes, data-driven development, reliability, and disciplined experimentation
  • You have experience and passion for fostering collaborative teams
  • Experience with TensorFlow, pyTorch, and/or Google Cloud Platform is a plus
  • Experience with building data pipelines and getting the data you need to build and evaluate your models, using tools like Apache Beam / Spark is a plus

Where Youll Be

  • This role is based in London (UK)
  • We offer you the flexibility to work where you work best! There will be some in person meetings, but still allows for flexibility to work from home. We ask that you come in 3 times per week.

Extensive learning opportunities, through our dedicated team, GreenHouse.

Flexible share incentives letting you choose how you share in our success.

Global parental leave, six months off - fully paid - for all new parents.

All The Feels, our employee assistance program and self-care hub.

Flexible public holidays, swap days off according to your values and beliefs.

Learn about life at Spotify

You are welcome at Spotify for who you are, no matter where you come from, what you look like, or what’s playing in your headphones. Our platform is for everyone, and so is our workplace. The more voices we have represented and amplified in our business, the more we will all thrive, contribute, and be forward-thinking! So bring us your personal experience, your perspectives, and your background. It’s in our differences that we will find the power to keep revolutionizing the way the world listens.

Spotify transformed music listening forever when we launched in 2008. Our mission is to unlock the potential of human creativity by giving a million creative artists the opportunity to live off their art and billions of fans the chance to enjoy and be passionate about these creators. Everything we do is driven by our love for music and podcasting. Today, we are the world’s most popular audio streaming subscription service with a community of more than 500 million users.

J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, Enterprise Research London, UK

Machine Learning Engineer, Amazon Studios AI Lab

Machine Learning Engineer - Personalisation

Lead Machine Learning Engineer, Associate Director, London

Lead / Senior Software Engineer - ML/AI

Staff Machine Learning Engineer, Anomaly Detection United Kingdom, London

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.