Machine Learning Engineer, Content and Catalog Management

Spotify AB
London
4 days ago
Create job alert

The Catalog and Content Management (CoCaM) team works at the heart of the Content Platform R&D studio, the central point for the ingestion, distribution, management, knowledge and growth of all content you experience through Spotify products. In CoCaM we drive the management of content and make decisions that impact the whole of Spotify on all content’s appropriateness, availability, quality and accuracy. Through reactive and proactive reporting mechanisms we use the knowledge of Content Platform and apply platform & business policy with content, user, financial and experiential context to make and store a decision best for Creators, Consumers and Spotify.

Location:

  • London

Job type:Permanent

This is an outstanding opportunity to contribute to the development and application of ML within our content and catalogue management platform. You’ll be at the forefront of driving impactful solutions, while collaborating within a dynamic and supportive team environment.

What Youll Do:

  • Drive the full lifecycle of ML solutions for CoCaM services, including research, design, development, evaluation, and deployment.
  • Manage Machine Learning projects ranging from Supervised Learning, to Reinforcement Learning, to LLMs.
  • Optimize and monitor deployed ML model performance, implementing improvements based on analysis.
  • Document and standardize ML processes, pipelines, and model specifications.
  • Collaborate with cross-functional teams spanning research, engineering, data science, product managers and other stakeholders to understand business needs and identify opportunities for ML applications.
  • Work closely with engineering teams to integrate ML models into existing systems and workflows.
  • Be an active participant of a group of machine learning engineers, staying updated with the latest advancements, participating in code reviews, and contributing to knowledge sharing across the team.

Who You Are:

  • 2+ years of hands-on experience in developing and deploying machine learning models in a production environment.
  • Practical experience in implementing ML systems using languages like Python or Scala and are familiar with relevant ML libraries and frameworks (e.g., TensorFlow or PyTorch).
  • Solid understanding of various machine learning algorithms (e.g., classification, regression, clustering) and their practical applications.
  • Proficient in data manipulation and analysis using tools like SQL and Pandas.
  • Broad ML skillset and are happy to work on all aspects of ML problems. Not only modeling, but also feature work in data pipelines, some implementation in data pipeline workflows, experimentation setup and analysis.
  • Experience with model evaluation metrics and techniques for ensuring model quality and generalization.
  • Experience with cloud platforms (e.g., GCP, AWS, Azure) and their ML services.
  • Comfortable communicating technical concepts clearly and effectively within the team and with non-technical stakeholders.
  • Proactive problem-solver with a strong sense of ownership and a drive to learn.

Where Youll Be:

  • This role is based in London (UK)
  • We offer you the flexibility to work where you work best! There will be some in-person meetings, but still allows for flexibility to work from home.

Extensive learning opportunities, through our dedicated team, GreenHouse.

Flexible share incentives letting you choose how you share in our success.

Global parental leave, six months off - fully paid - for all new parents.

All The Feels, our employee assistance program and self-care hub.

Flexible public holidays, swap days off according to your values and beliefs.

Learn about life at Spotify.

You are welcome at Spotify for who you are, no matter where you come from, what you look like, or what’s playing in your headphones. Our platform is for everyone, and so is our workplace. The more voices we have represented and amplified in our business, the more we will all thrive, contribute, and be forward-thinking! So bring us your personal experience, your perspectives, and your background. It’s in our differences that we will find the power to keep revolutionizing the way the world listens.

Spotify transformed music listening forever when we launched in 2008. Our mission is to unlock the potential of human creativity by giving a million creative artists the opportunity to live off their art and billions of fans the chance to enjoy and be passionate about these creators. Everything we do is driven by our love for music and podcasting. Today, we are the world’s most popular audio streaming subscription service with a community of more than 500 million users.

J-18808-Ljbffr

Related Jobs

View all jobs

Machine Learning Engineer, Amazon Studios AI Lab

Sr. Data Scientist / Machine Learning Engineer - GenAI &LLM London, United Kingdom

Lead Machine Learning Engineer, Associate Director, London

Machine Learning Engineer, App Ads

Machine Learning Engineer, Enterprise Research London, UK

Lead / Senior Software Engineer - ML/AI

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.

Machine Learning Jobs in the Public Sector: Opportunities Across GDS, NHS, MOD, and More

Machine learning (ML) has rapidly moved from academic research labs to the heart of industrial and governmental operations. Its ability to uncover patterns, predict outcomes, and automate complex tasks has revolutionised industries ranging from finance to retail. Now, the public sector—encompassing government departments, healthcare systems, and defence agencies—has become an increasingly fertile ground for machine learning jobs. Why? Because government bodies oversee vast datasets, manage critical services for millions of citizens, and must operate efficiently under tight resource constraints. From using ML algorithms to improve patient outcomes in the NHS, to enhancing cybersecurity within the Ministry of Defence (MOD), there’s a growing demand for skilled ML professionals in UK public sector roles. If you’re passionate about harnessing data-driven insights to solve large-scale problems and contribute to societal well-being, machine learning jobs in the public sector offer an unparalleled blend of challenge and impact. In this article, we’ll explore the key reasons behind the public sector’s investment in ML, highlight the leading organisations, outline common job roles, and provide practical guidance on securing a machine learning position that helps shape the future of government services.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.