National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer, AWS Generative AI Innovation Center

Amazon
London
1 week ago
Applications closed

Related Jobs

View all jobs

Data Scientist -UAE National, AWS Generative AI Innovation Center

Data Science Manager - Marketing & Customer Generative AI Enterprise Architect

Data Scientist

Data Science Manager

Head of Data Engineering & Insight

Applied Scientist II - Computer Vision

DESCRIPTION

The Generative AI Innovation Center at AWS helps AWS customers accelerate the use of Generative AI and realize transformational business opportunities. This is a cross-functional team of ML scientists, engineers, architects, and strategists working step-by-step with customers to build bespoke solutions that harness the power of generative AI.

As an ML Engineer, you'll partner with technology and business teams to build solutions that surprise and delight our customers. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies.

We're looking for Engineers and Architects capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems.

Key job responsibilities
- Collaborate with ML scientist and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges
- Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership
- Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI
- Create and deliver reusable technical assets that help to accelerate the adoption of generative AI on AWS platform
- Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder
- Provide customer and market feedback to Product and Engineering teams to help define product direction.

About the team
Generative AI Innovation Center is a program that pairs you with AWS science and strategy experts with deep experience in AI/ML and generative AI techniques to:
- Imagine new applications of generative AI to address your needs.
- Identify new use cases based on business value.
- Integrate Generative AI into your existing applications and workflows.

Diverse Experiences

AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn't followed a traditional path, or includes alternative experiences, don't let it stop you from applying.

Why AWS?

Amazon Web Services (AWS) is the world's most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating - that's why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses.

Inclusive Team Culture

Here at AWS, it's in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness.

Mentorship & Career Growth

We're continuously raising our performance bar as we strive to become Earth's Best Employer. That's why you'll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.

Work/Life Balance

We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there's nothing we can't achieve in the cloud.

BASIC QUALIFICATIONS

- Bachelor's degree in computer science or equivalent
- Experience in professional, non-internship software development
- Experience coding in Python, R, Matlab, Java or other modern programming language
- Several years of relevant experience in developing and deploying large scale machine learning or deep learning models and/or systems into production, including batch and real-time data processing, model containerization, CI/CD pipelines, API development, model training and productionizing ML models
- Experience contributing to the architecture and design (architecture, design patterns, reliability and scaling) of new and current systems

PREFERRED QUALIFICATIONS

- Masters or PhD degree in computer science, or related technical, math, or scientific field
- Proven knowledge of deep learning and experience using Python and frameworks such as Pytorch, TensorFlow
- Proven knowledge of Generative AI and hands-on experience of building applications with large foundation models Experiences related to AWS services such as SageMaker, EMR, S3, DynamoDB and EC2, hands-on experience of building ML solutions on AWS
- Strong communication skills, with attention to detail and ability to convey rigorous mathematical concepts and considerations to non-experts

Amazon is an equal opportunities employer. We believe passionately that employing a diverse workforce is central to our success. We make recruiting decisions based on your experience and skills. We value your passion to discover, invent, simplify and build. Protecting your privacy and the security of your data is a longstanding top priority for Amazon. Please consult our Privacy Notice (https://www.amazon.jobs/en/privacy_page) to know more about how we collect, use and transfer the personal data of our candidates.

Amazon is an equal opportunity employer and does not discriminate on the basis of protected veteran status, disability, or other legally protected status.

Our inclusive culture empowers Amazonians to deliver the best results for our customers. If you have a disability and need a workplace accommodation or adjustment during the application and hiring process, including support for the interview or onboarding process, please visithttps://amazon.jobs/content/en/how-we-hire/accommodationsfor more information. If the country/region you're applying in isn't listed, please contact your Recruiting Partner.


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.