Engineer the Quantum RevolutionYour expertise can help us shape the future of quantum computing at Oxford Ionics.

View Open Roles

Machine Learning Engineer - AI for Grid Innovation & Energy Transition (Energy Sector Experience Required)

GE Vernova
Stafford
2 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer (SC Cleared)

Machine Learning Engineer - Computer Vision

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - Computer Vision

Job Description Summary
GE Vernova is accelerating the path to more reliable, affordable, and sustainable energy, while helping our customers power economies and deliver the electricity that is vital to health, safety, security, and improved quality of life. Are you excited at the opportunity to electrify and decarbonize the world?

We are looking for a passionate, creative, and results-oriented Machine Learning (ML) Engineer with substantial experience in the energy, smart infrastructure, or industrial automation sectors to join our AI & Grid Innovation team. In this role, you will be at the forefront of developing, deploying, and validating cutting-edge AI/ML models designed specifically for grid innovation applications. You will play a key role in building systems to test and verify proof-of-concepts, delivering AI-driven solutions both at the edge and in the cloud.

Reporting to the AI Director within the CTO organization, this position offers the opportunity to work collaboratively with Grid Automation product lines, R&D teams, and other business units to create impactful, sustainable, and inclusive solutions across energy systems, smart infrastructure, and industrial automation. Your expertise in automation, AI, and their integration into these domains will be essential in shaping the company's mission to foster innovation, inclusivity, and progress.

Job Description

Essential Responsibilities:

  • Lead the design, development, and deployment of scalable AI/ML models for grid innovation applications in the energy, smart infrastructure, or industrial automation sectors.
  • Create innovative analytics to optimize grid system performance and product differentiation.
  • Develop AI/ML applications for customer-driven use cases, including predictive maintenance and load forecasting.
  • Validate and verify AI/ML proof-of-concepts in real-world environments, ensuring they meet the diverse needs of our customers.
  • Monitor, maintain, and optimize deployed AI/ML models to continuously enhance their accuracy and performance.
  • Manage the collection, structuring, and analysis of data to enable seamless AI/ML applications.
  • Ensure that models are production-ready and continuously improve in line with emerging needs and technologies.
  • Embrace MLOps principles to streamline the deployment and updating of ML models in production.
  • Collaborate closely with cross-functional teams to identify business challenges and deliver AI-driven solutions that are efficient, equitable, and scalable.
  • Integrate AI/ML solutions effortlessly into grid automation systems, whether in the cloud or at the edge.


Must-Have Requirements:

  • Master's or PhD in Computer Science, Information Technology, Electrical Engineering, or a related field.
  • Proven experience in the energy, smart infrastructure, or industrial automation sectors, with expertise in system protection, automation, monitoring, and diagnostics.
  • Strong foundation in AI/ML techniques, including supervised, unsupervised, and reinforcement learning, deep learning, and large language models (LLMs).
  • Experience with ML frameworks such as TensorFlow, PyTorch, and scikit-learn.
  • Hands-on experience deploying ML models in production environments using MLOps principles.
  • Expertise in relevant AI/ML applications, such as predictive maintenance, load forecasting, or optimization.
  • Proficiency in programming languages such as Python, R, MATLAB, or C++.
  • Familiarity with cloud platforms (AWS, Azure, Google Cloud) and microservices architecture.


Nice-to-Have Requirements:

  • Experience with data modeling, containerization (Docker, Kubernetes), and distributed computing (Spark, Scala).
  • Familiarity with GraphDB, MongoDB, SQL/NoSQL, and other DBMS technologies.
  • Understanding of system automation, protection, and diagnostics in relevant sectors.
  • Experience with deep learning algorithms, reinforcement learning, NLP, and computer vision in applicable domains.
  • Excellent communication, organizational, and problem-solving skills, with a strong emphasis on teamwork, collaboration, and fostering inclusive environments.


At GE Vernova - Grid Automation, you will have the opportunity to work on cutting-edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.

AboutGEVGrid Solutions:

At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to full fill the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotable role in integrating Renewables onto the grid to drive to carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable Grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.

Why we come to work:

At GEV, our engineers are always up for the challenge - and we're always driven to find the best solution. Our projects are unique and interesting, and you'll need to bring a solution-focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you'll be exposed to game-changing, diverse projects that truly allow you to play your part in the energy transition.

What we offer:

A key role in a dynamic, international working environment with a large degree of flexibility of work agreements

Competitive benefits, and great development opportunities - including private health insurance.

Additional Information

Relocation Assistance Provided:No

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Seasonal Hiring Peaks for Machine Learning Jobs: The Best Months to Apply & Why

The UK's machine learning sector has evolved into one of Europe's most intellectually stimulating and financially rewarding technology markets, with roles spanning from junior ML engineers to principal machine learning scientists and heads of artificial intelligence research. With machine learning positions commanding salaries from £32,000 for graduate ML engineers to £160,000+ for senior principal scientists, understanding when organisations actively recruit can dramatically accelerate your career progression in this pioneering and rapidly evolving field. Unlike traditional software engineering roles, machine learning hiring follows distinct patterns influenced by AI research cycles, model development timelines, and algorithmic innovation schedules. The sector's unique combination of mathematical rigour, computational complexity, and real-world application requirements creates predictable hiring windows that strategic professionals can leverage to advance their careers in developing tomorrow's intelligent systems. This comprehensive guide explores the optimal timing for machine learning job applications in the UK, examining how enterprise AI strategies, academic research cycles, and deep learning initiatives influence recruitment patterns, and why strategic timing can determine whether you join a groundbreaking AI research team or miss the opportunity to develop the next generation of machine learning algorithms.

Pre-Employment Checks for Machine Learning Jobs: DBS, References & Right-to-Work and more Explained

Pre-employment screening in machine learning reflects the discipline's unique position at the intersection of artificial intelligence research, algorithmic decision-making, and transformative business automation. Machine learning professionals often have privileged access to proprietary datasets, cutting-edge algorithms, and strategic AI systems that form the foundation of organizational competitive advantage and automated decision-making capabilities. The machine learning industry operates within complex regulatory frameworks spanning AI governance directives, algorithmic accountability requirements, and emerging ML ethics regulations. Machine learning specialists must demonstrate not only technical competence in model development and deployment but also deep understanding of algorithmic fairness, AI safety principles, and the societal implications of automated decision-making at scale. Modern machine learning roles frequently involve developing systems that impact hiring decisions, financial services, healthcare diagnostics, and autonomous operations across multiple regulatory jurisdictions and ethical frameworks simultaneously. The combination of algorithmic influence, predictive capabilities, and automated decision-making authority makes thorough candidate verification essential for maintaining compliance, fairness, and public trust in AI-powered systems.

Why Now Is the Perfect Time to Launch Your Career in Machine Learning: The UK's Intelligence Revolution

The United Kingdom stands at the epicentre of a machine learning revolution that's fundamentally transforming how we solve problems, deliver services, and unlock insights from data at unprecedented scale. From the AI-powered diagnostic systems revolutionising healthcare in Manchester to the algorithmic trading platforms driving London's financial markets, Britain's embrace of intelligent systems has created an extraordinary demand for skilled machine learning professionals that dramatically exceeds the current talent supply. If you've been seeking a career at the forefront of technological innovation or looking to position yourself in one of the most impactful sectors of the digital economy, machine learning represents an exceptional opportunity. The convergence of abundant data availability, computational power accessibility, advanced algorithmic development, and enterprise AI adoption has created perfect conditions for machine learning career success.