National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer - Ads Retrieval

reddit
London
10 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Reddit is a community of communities. It’s built on shared interests, passion, and trust and is home to the most open and authentic conversations on the internet. Every day, Reddit users submit, vote, and comment on the topics they care most about. With ,+ active communities and approximately M+ daily active unique visitors, Reddit is one of the internet’s largest sources of information. For more information, visit .

Ads Retrieval team’s mission is to identify the business opportunities, provide ML models and data driven solutions on candidate sourcing, recommendation, early ranking and filtering in Ads upper funnel. The team works on:

Build and iterate on candidate sourcing and early ranking Machine Learning models and algorithms to find the most relevant, engaging and diversified ads candidates for global optimization and various product use cases.  Design and establish a large scale candidate indexing system to enable efficient candidate retrieval at a scale of millions to billions, which powers ads recommendation and ranking with good balance between quality and computation efficiency. 

As a machine learning engineer in the ads retrieval team, you will research, formulate and execute on our mission to build end-to-end ML solutions and deliver the right ad to the right user under the right context with data and ML driven solutions. 

Your Responsibilities:

Building ads retrieval and early ranking system for critical ML tasks with advanced industrial level techniques Research, implement, test, and launch new model architectures including information retrieval, ANN, recommendation system, deep neural networks within high dimensional information system Work on large scale data systems, backend services and product integration Collaborate closely with multiple stakeholders cross product, engineering, research and marketing 

Who You Might Be:

+ years of experience with applied machine learning models with Tensorflow/Pytorch with large-scale ML systems  + years of end-to-end experience of training, evaluating, testing, and deploying machine learning models Proficiency with programming languages (Java, Python, Golang, C++, or similar) and statistical analysis. Experience of orchestrating complicated data pipelines and system engineering on large-scale dataset Prior experience with information retrieval and recommendation system Ads domain knowledge on product and ML solutions is a plus

Benefits:

Pension Scheme Private Medical and Dental Scheme Life Assurance, Income Protection Workspace benefit for your home office  Personal & Professional development funds Family Planning Support  Commuter Benefits Flexible Vacation & Reddit Global Days Off

Join us at Reddit, and help us build a community that is inclusive and empowering for everyone.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.