National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Engineer

The Portfolio Group
Hinckley
1 week ago
Create job alert

An exceptional opportunity for a Machine Learning Engineer (with Full-Stack experience) to join an innovative market leader at the forefront of developing next-generation solutions that transform digital interactions. The role will focus on projects to leverage state-of-the-art generative AI, retrieval-augmented generation (RAG), and reasoning frameworks to build intelligent and context-aware systems.

We are seeking talented Machine Learning Engineers with full-stack software development experience to join our client's team and help shape the future of AI-powered automation. Within this dynamic role varied duties will include:

Search relevancy engineering.
Conversational AI Development: Design, train, fine-tune, and deploy LLMs with reasoning capabilities.
Retrieval-Augmented Generation (RAG): Implement, optimise, and scale RAG pipelines for effective information retrieval from structured and unstructured sources.
Model Fine-Tuning & Training: Train domain-specific models using techniques like LoRA, QLoRA, PEFT, reinforcement learning, and supervised fine-tuning (SFT).
Model Deployment & Inferencing: Optimise model serving and inference using vLLM, DeepSpeed, TensorRT, Triton, and other acceleration frameworks.
Multi-Agent Systems: Develop and integrate agentic capabilities using frameworks such as LangChain, CrewAI, AutoGen, and DSPy.
AWS Cloud & MLOps: Deploy scalable machine learning workloads on AWS using services like SageMaker, Bedrock, Lambda, S3, DynamoDB, ECS, and EKS.
End-to-End AI Product Development: Work across the full ML lifecycle, from data collection and preprocessing to model evaluation, deployment, and monitoring.
Full-Stack Integration: Develop APIs and integrate ML models into web applications using FastAPI, Flask, React, TypeScript, and Node.js.
Vector Databases & Search: Implement embeddings and retrieval mechanisms using Pinecone, Weaviate, FAISS, Milvus, ChromaDB, or OpenSearch.Required skills & experience:

3-5+ years in machine learning and software development
Proficient in Python, PyTorch or TensorFlow or Hugging Face Transformers
Experience with RAG, LLM fine-tuning, and expertise in AWS and cloud-native AI deployments.
Full-stack experience (React, TypeScript, Node.js) and API development.
Familiarity with vector search and multi-agent orchestrationApply now to join this high growth and award-winning organisation with the opportunity to be part of building the future of AI driven projects and solutions. The role offers a highly competitive salary and benefits package and will be office based in Leicestershire.

MLE(phone number removed)AM

INDAM

Related Jobs

View all jobs

Machine Learning Engineer - Bioimage Data & Agentic Systems

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.