Machine Learning Engineer - Ads Conversion Modeling

reddit
London
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer - Bristol

Machine Learning Engineer

Machine Learning Engineer

Reddit is a community of communities. It’s built on shared interests, passion, and trust and is home to the most open and authentic conversations on the internet. Every day, Reddit users submit, vote, and comment on the topics they care most about. With ,+ active communities and approximately M+ daily active unique visitors, Reddit is one of the internet’s largest sources of information. For more information, visit .

As a company, Reddit primarily generates revenue through advertising, and we're working towards building a massive business to fund our mission. We distinguish ourselves from other digital ad platforms by attracting advertisers who want to connect with a specific target audience because of our passionate and engaged communities.

The Ads Conversions Modeling Team is entrusted with the development and maintenance of a diverse set of Machine Learning models that are responsible for predictions regarding user conversions after engaging with Reddit. The creation and enhancement of these models plays a crucial role in our organization's efforts to optimize advertising effectiveness and drive business growth. We are looking for a motivated engineer that will help us advance our vision. As a diverse group of software engineers, product managers, data scientists, and ads experts, we are excited for you to join our team!

As a machine learning engineer in the Ads Conversion Modeling Team, you will research, formulate, and execute projects, and actively participate in the end-to-end implementation process. You will collaborate with cross-functional teams to ensure successful product delivery. You will also be able to contribute your expertise and shape the future of ads ML at Reddit!

Your Responsibilities :

Building industrial-level models for critical ML tasks with advanced modeling architectures and techniques  Research, implement, test, and launch new model architectures including deep neural networks with advanced pooling and feature interaction architectures Systematic feature engineering works to convert all kinds of raw data in Reddit (dense & sparse, behavior & content, etc) into features with various FE technologies such as aggregation, embedding, sub-models, etc. Contribute meaningfully to team strategy. We give everyone a seat at the table and encourage active participation in planning for the future

Who You Might Be:

Tracking records of consistently driving KPI wins through systematic works around model architecture and feature engineering + years of experience with industry-level Machine Learning models + years of experience with mainstream ML frameworks (such as Tensorflow and Pytorch) + years of end-to-end experience of training, evaluating, testing, and deploying industry-level models Deep learning experience is a strong plus Experience in orchestrating complicated data generation pipelines on large-scale dataset is a plus Experience with Ads domain is a plus Experience with Recommendation Systems is a plus

Benefits:

Pension Scheme Private Medical and Dental Scheme Life Assurance, Income Protection Workspace benefit for your home office  Personal & Professional development funds Family Planning Support  Commuter Benefits Flexible Vacation & Reddit Global Days Off

Join us at Reddit, and help us build a community that is inclusive and empowering for everyone.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in Machine Learning Job Applications (UK Guide)

Whether you’re applying for machine learning engineer, applied scientist, research scientist, ML Ops or data scientist roles, hiring managers scan applications quickly — often making decisions before they’ve read beyond the top third of your CV. In the competitive UK market, it’s not enough to list skills. You must send clear signals of relevance, delivery, impact, reasoning and readiness for production — and do it within the first few lines of your CV or portfolio. This guide walks you through exactly what hiring managers look for first in machine learning applications, how they evaluate CVs and portfolios, and what you can do to improve your chances of getting shortlisted at every stage — from your CV and LinkedIn profile to your cover letter and project portfolio.

MLOps Jobs in the UK: The Complete Career Guide for Machine Learning Professionals

Machine learning has moved from experimentation to production at scale. As a result, MLOps jobs have become some of the most in-demand and best-paid roles in the UK tech market. For job seekers with experience in machine learning, data science, software engineering or cloud infrastructure, MLOps represents a powerful career pivot or progression. This guide is designed to help you understand what MLOps roles involve, which skills employers are hiring for, how to transition into MLOps, salary expectations in the UK, and how to land your next role using specialist platforms like MachineLearningJobs.co.uk.

The Skills Gap in Machine Learning Jobs: What Universities Aren’t Teaching

Machine learning has moved from academic research into the core of modern business. From recommendation engines and fraud detection to medical imaging, autonomous systems and language models, machine learning now underpins many of the UK’s most critical technologies. Universities have responded quickly. Machine learning modules are now standard in computer science degrees, specialist MSc programmes have proliferated, and online courses promise to fast-track careers in the field. And yet, despite this growth in education, UK employers consistently report the same problem: Many candidates with machine learning qualifications are not job-ready. Roles remain open for months. Interview processes filter out large numbers of applicants. Graduates with strong theoretical knowledge struggle when faced with practical tasks. The issue is not intelligence or effort. It is a persistent skills gap between university-level machine learning education and real-world machine learning jobs. This article explores that gap in depth: what universities teach well, what they routinely miss, why the gap exists, what employers actually want, and how jobseekers can bridge the divide to build successful careers in machine learning.