Machine Learning Engineer (3D Gaussian Splatting & NeRF)

M-XR
London
3 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Summary


M-XR is a deep tech startup with a mission to make the 3D digital world look real; whether that be the graphics in a computer game, the CGI in a movie, or a product line photoshoot. We are building a solution that empowers 3D creators and enables the creation of productions at a speed, scale and quality not found anywhere else in the industry. Over the past three years we’ve developed foundational technology capable of capturing real world objects and accurately predicting their material properties, enabling the creation of ultra-realistic production-ready digital copies.


Curiosity and creativity are at the heart of M-XR. We feel strong that asking questions and looking at problems from new perspectives across departments is key to pushing the envelope for what is possible! We are looking for skilled individuals who share this passionate curiosity, question the norm, and have the willingness to explore something brand new. If you are an engineer or developer that shares this passion about shaping the future of 3D we would love to hear from you.


Description of work to be performed


As a Machine Learning Engineer at M-XR specializing in Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), you will play a pivotal role in advancing our capabilities. Your focus will be on implementing cutting-edge computer vision algorithms for NeRF/3DGS and exploring ways to enhance these technologies by integrating segmentation, language embeddings (e.g., CLIP), and other advancements in 3D machine learning.


Leveraging M-XR’s proprietary dataset—the highest-quality ultra-realistic 3D dataset of its kind—you’ll tackle innovative projects that push the boundaries of what’s possible in machine learning and 3D. Key initiatives include 3D asset relighting and extracting ultra-realistic material properties directly from NeRFs/3DGS. A core part of your role will involve adapting, implementing, and enhancing open-source research and models such as SAM, Stable Diffusion, CLIP, DINO, NeRF, and 3DGS to create solutions tailored to our unique use cases.


Your contributions will directly set new standards for realism and quality in 3D content creation, with applications in major film and game productions. This role offers an exciting opportunity to tackle complex challenges, develop groundbreaking technologies, and witness the tangible impact of your work on the future of the entertainment industry.


Ideal Candidate


•Creative and innovative thinker

•Resourceful and effective problem-solver

•Clear, articulate, and proactive communicator

•Strong user-focused mindset

  • Collaborative and supportive team player


Requirements


•Proficiency with a major industry ML framework (e.g., PyTorch, JAX, TensorFlow)

•Expertise in writing production-quality Python code

•Experience with CUDA programming

•Familiarity with Git and version control systems

•Strong understanding of computer graphics principles

•Hands-on experience with 3D Gaussian Splatting, either through contributions to open-source NeRF/3DGS repositories or solving relevant problems in the field

•Practical experience in training and fine-tuning diffusion models (a plus)

•Knowledge of C++ (an advantage)


Please ensure your CV is attached.


Best,

M-XR


Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Leading UK Machine Learning Labs and Institutes: Pioneering the Future of AI

Over the past decade, machine learning (ML) has transformed from an academic field into a linchpin of commercial innovation. From personalised product recommendations to healthcare diagnostics, it fuels the algorithms behind every major breakthrough in the digital world. For data-driven enterprises and researchers, the United Kingdom offers a vibrant landscape of top-tier ML labs, academic institutes, and forward-looking industries. If you’re aiming to forge a career in this exciting domain—be it in cutting-edge research, industry applications, or policy-making—this comprehensive guide, written for MachineLearningJobs.co.uk, will walk you through the leading UK machine learning hubs. We’ll delve into the opportunities they present, the latest research challenges they tackle, and the career paths that await those ready to shape the future of AI.

Shadowing and Mentorship in Machine Learning: Gaining Experience Before Your First Full-Time Role

How to Find Mentors, Build Industry Connections, and Hone Your Technical & Soft Skills for a Thriving ML Career Machine learning (ML) is transforming industries at a rapid pace, fuelling breakthroughs in healthcare, finance, e-commerce, manufacturing, cybersecurity, and beyond. As the demand for ML expertise skyrockets, the competition for early-career opportunities has intensified. It’s not enough to complete an online course or a university degree; employers are looking for proven, hands-on experience. So, how do you stand out from the crowd? Two powerful strategies—shadowing and mentorship—can help you bridge the gap between academic theory and industry practice. By learning directly from experienced professionals, you gain practical insights and build the confidence needed to excel in real-world ML roles. In this in-depth guide, we’ll explore why mentorship is crucial, how to find the right mentors (both formally and informally), how to demonstrate your value as a mentee, and the best ways to shadow machine learning practitioners. By the end, you’ll be equipped with the knowledge and tactics to jump-start your career and secure your first full-time ML role.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.