Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Machine Learning Engineer (3D Gaussian Splatting & NeRF)

M-XR
London
11 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Machine Learning Engineer - London

Machine Learning Engineer (Databricks)

Machine Learning Engineer

Machine Learning Engineer (Databricks)

Summary


M-XR is a deep tech startup with a mission to make the 3D digital world look real; whether that be the graphics in a computer game, the CGI in a movie, or a product line photoshoot. We are building a solution that empowers 3D creators and enables the creation of productions at a speed, scale and quality not found anywhere else in the industry. Over the past three years we’ve developed foundational technology capable of capturing real world objects and accurately predicting their material properties, enabling the creation of ultra-realistic production-ready digital copies.


Curiosity and creativity are at the heart of M-XR. We feel strong that asking questions and looking at problems from new perspectives across departments is key to pushing the envelope for what is possible! We are looking for skilled individuals who share this passionate curiosity, question the norm, and have the willingness to explore something brand new. If you are an engineer or developer that shares this passion about shaping the future of 3D we would love to hear from you.


Description of work to be performed


As a Machine Learning Engineer at M-XR specializing in Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), you will play a pivotal role in advancing our capabilities. Your focus will be on implementing cutting-edge computer vision algorithms for NeRF/3DGS and exploring ways to enhance these technologies by integrating segmentation, language embeddings (e.g., CLIP), and other advancements in 3D machine learning.


Leveraging M-XR’s proprietary dataset—the highest-quality ultra-realistic 3D dataset of its kind—you’ll tackle innovative projects that push the boundaries of what’s possible in machine learning and 3D. Key initiatives include 3D asset relighting and extracting ultra-realistic material properties directly from NeRFs/3DGS. A core part of your role will involve adapting, implementing, and enhancing open-source research and models such as SAM, Stable Diffusion, CLIP, DINO, NeRF, and 3DGS to create solutions tailored to our unique use cases.


Your contributions will directly set new standards for realism and quality in 3D content creation, with applications in major film and game productions. This role offers an exciting opportunity to tackle complex challenges, develop groundbreaking technologies, and witness the tangible impact of your work on the future of the entertainment industry.


Ideal Candidate


•Creative and innovative thinker

•Resourceful and effective problem-solver

•Clear, articulate, and proactive communicator

•Strong user-focused mindset

  • Collaborative and supportive team player


Requirements


•Proficiency with a major industry ML framework (e.g., PyTorch, JAX, TensorFlow)

•Expertise in writing production-quality Python code

•Experience with CUDA programming

•Familiarity with Git and version control systems

•Strong understanding of computer graphics principles

•Hands-on experience with 3D Gaussian Splatting, either through contributions to open-source NeRF/3DGS repositories or solving relevant problems in the field

•Practical experience in training and fine-tuning diffusion models (a plus)

•Knowledge of C++ (an advantage)


Please ensure your CV is attached.


Best,

M-XR


Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.