Machine Learning Engineer

DeGould, Ltd.
Exeter
7 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Team: Tech
Hours: Full time
Reports to: Defect Detection Team Lead
Location: Exeter or Bristol, minimum of 3 days in the office.

Role Overview:

As a Machine Learning Engineer at DeGould you will be responsible for building and maintaining our labelling, training and production inference data pipelines to produce high quality datasets, models and services to power our automated vehicle inspection product. Following MLOps and DevOps best practices you will build and deploy bespoke computer vision ML models using a service-oriented architecture in AWS, GCP and on Edge to process photos from DeGould’s ultra high-resolution imaging photo booths. The objective is to convert this data into useful information that creates value for customers.

DeGould is an exciting, multi-award-winning company, in the software and AI sector. The company develops and delivers innovative vision and damage detection systems to a range of blue-chip corporate clients (including Toyota, Ford, Jaguar Land Rover, Mercedes Benz, Nissan, Honda and Bentley). As the company embarks on an exciting growth phase, it plans to expand the team, further develop existing products, and explore opportunities for new ones.

Our Vision:
DeGould’s vision is to be the standard for new vehicle inspection in the automotive sector.

Key Responsibilities:

The main deliverables of the role are:

  • Deliver performant machine learning models for customers.
  • Building capabilities to monitor and evaluate model performance and metrics.

Detailed duties of the role include:

  • Write production, robust, readable and extendable code to support machine learning pipelines.
  • Use industry best practices and seek to implement improvements across the machine learning lifecycle.
  • Continuous evaluation of models in production and system performance analysis.
  • Proactively seek technical solutions that solve customer problems.
  • Stay up to date and evaluate opportunities to apply the latest tools, research, methods and technologies.
  • Work across multidisciplinary teams to deliver against the company’s objectives.
  • Interpret internal and external business challenges and recommend appropriate system and technology solutions to produce a functional solution.
  • Identify areas for improvement and development using a full range of software development tools.
  • Undertaking any other tasks/duties as may be reasonably required to fulfil DeGould’s objectives.

Depending on the individual role, some or all of the following:

  • Developing and championing robust MLOps frameworks and policies.
  • Training and maintaining performant vehicle segmentation models.
  • Labelling tasks and data quality.
  • Designing and implementing reporting dashboards.
  • Developing novel approaches from academic and industry research.
  • Production model deployment and maintenance.

Skills:

  • Technical expertise in AI for image processing using: deep learning, machine learning, transfer learning, CNNs and transformers, such as Detectron, ConvNext, DETR, DINO or similar.
  • Technical knowledge of relevant ML performance metrics and how to apply them to monitor models.
  • Strong knowledge of Python (such as numpy, pandas, matplotlib, streamlit, and opencv).
  • Strong knowledge of modern programming paradigms (OOP, functional programming etc).
  • Ability to write clean, robust, readable, error handling and error tolerant code.
  • Good knowledge of at least one of PyTorch, Keras, or Tensorflow.
  • Working knowledge of core AWS concepts and services such as EC2, ECS, EKS, and DynamoDB.
  • Good knowledge of DevOps and MLOps tools, including usage of Git, Bash, UNIX, Docker, containers and CI/CD pipelines (GitHub Actions or similar).
  • Able to work effectively both as part of a team and individually.

Behaviours:
As an employee of DeGould Ltd, you are required to meet a number of common standards of behaviour, accountabilities and outcomes. In addition, and in relation to this role it is expected that the successful candidate will exhibit these behaviours:

  • Leadership – leads by example through their own behaviour.
  • Creative – open to new ideas and unafraid to try new approaches.
  • Analytical – capable of working through detail and uses data in decision making.
  • Flexibility – thriving in a fast paced, changing and opportunity rich environment.
  • Collaborative – enthusiastically works with colleagues and customers alike.
  • Dependable – deliver on stakeholder commitments in a timely manner.

Benefits:
Competitive salary and benefits including:

  • 25 days holiday per annum (excluding bank holidays).
  • Additional days holiday for birthday.
  • Cycle to work scheme.
  • Pension auto enrolment after 3 months service.
  • Enhanced maternity, paternity and shared parental leave.
  • Health insurance with Vitality for employee, spouse and children.
  • Flexible working can be agreed.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write a Machine Learning Job Ad That Attracts the Right People

Machine learning now sits at the heart of many UK organisations, powering everything from recommendation engines and fraud detection to forecasting, automation and decision support. As adoption grows, so does demand for skilled machine learning professionals. Yet many employers struggle to attract the right candidates. Machine learning job adverts often generate high volumes of applications, but few applicants have the blend of modelling skill, engineering awareness and real-world experience the role actually requires. Meanwhile, strong machine learning engineers and scientists quietly avoid adverts that feel vague, inflated or confused. In most cases, the issue is not the talent market — it is the job advert itself. Machine learning professionals are analytical, technically rigorous and highly selective. A poorly written job ad signals unclear expectations and low ML maturity. A well-written one signals credibility, focus and a serious approach to applied machine learning. This guide explains how to write a machine learning job ad that attracts the right people, improves applicant quality and strengthens your employer brand.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.