National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Machine Learning Consultant

CipherTek Recruitment
London
1 month ago
Create job alert

We are partnering with a prestigious investment bank to find a highly skilled andHands-onMachine Learning Operations(MLOps) Lead.This role will be pivotal in building out a greenfield framework for the deployment and management of scalable AI/ML solutions, specifically for the front and Middle Office user base.


The role is todefine and set up a greenfield standardized MLOps framework for capital marketsand set up all the tools and best practices to educate data scientists and equip them with the right tools and expertise. You MUST be hands on.


A strong understanding ofDevops, Machine learning and Data engineeringis required to enable to right candidate to implement the MLOps processes.


This team are a specialist team and this role in particular is a key position. Once the framework is established , you will become the gatekeeper to lots of other divisions within the bank, who will leverage your knowledge and expertise. As such, you will gain exposure to lots of different business areas and business stakeholders, so relationship building and good communication will be key.


You will bring a expertise in data science or data engineering, with a specificfocus on MLOps for at least 2 years. This platform is critical and will be rolled out across the bank, so we are looking for only the highest calibre candidates with experience building and being responsible for greenfield MLOps pipelines that handle very large datasets. You will be responsible for building out a greenfield standaridised framework for Capital markets.


The core platform is built on Azure Databricks Lakehouse, consolidating data from various front and Middle Office systems to support BI, MI, and advanced AI/ML analytics. As a lead, you will shape the MLOps framework and establish best practices for deploying and managing AI/ML solutions for a diverse and dynamic user base, including data scientists, quants, risk managers, traders, and other tech-savvy users.


Core Responsibilities:

  • Lead the development of AI/ML CI/CD pipelines and frameworks for supporting AI/ML and Data Science solutions on Azure Databricks.
  • Define and implement best practices for DataOps, DevOps, ModelOps, and LLMOps to standardize and accelerate the AI/ML life cycle.
  • Collaborate with Data Scientists and teams across Front Office Quant teams, Sales/Trading desks to build, monitor, and maintain AI/ML solutions.
  • Adopt cutting-edge advancements in GenAI and LLM technologies to keep the platform at the forefront of innovation.
  • Align with the bank's central Enterprise Advanced Analytics & Artificial Intelligence group to ensure alignment with organizational goals, strategies, and governance.
  • Manage large datasets and support data preparation, integration, and analytics across various data sources (orders, quotes, trades, risk, etc.).


Essential Requirements:

  • 2+ years of experience in MLOps and at least 3 years in AI/ML engineering.
  • Knowledge in Azure Databricks and associated services.
  • Proficiency with ML frameworks and libraries in Python.
  • Proven experience deploying and maintaining LLM services and solutions.
  • Expertise in Azure DevOps and GitHub Actions.
  • Familiarity with Databricks CLI and Databricks Job Bundle.
  • Strong programming skills in Python and SQL; familiarity with Scala is a plus.
  • Solid understanding of AI/ML algorithms, model training, evaluation (including hyperparameter tuning), deployment, monitoring, and governance.
  • Experience in handling large datasets and performing data preparation and integration.
  • Experience with Agile methodologies and SDLC practices.
  • Strong problem-solving, analytical, and communication skills.


Why Join Us?

  • Work on a greenfield project with a major global investment bank.
  • Gain deep expertise in MLOps, Azure Databricks, GenAI, and LLM technologies.
  • Play a key role in building scalable AI/ML solutions across Capital Markets.
  • Remote work flexibility with a competitive day rate.


If you are a talented MLOps professional with the expertise to help build and scale advanced AI/ML solutions in the investment banking space, we'd love to hear from you. Apply now!


How to Apply:

If you meet the qualifications and are excited about this opportunity, please submit your CV.

We look forward to hearing from you!


Job Title: Machine Learning Operations Lead- Investment Banking

Location: Remote (London City- UK based) Very flexible working arrangements

Rate: Up to £850 per day (Outside IR35) or Salary package upto £200k

Job Type: 12-Month Contract (with extensions)

Industry: Investment Banking/Finance Technology

Related Jobs

View all jobs

Machine Learning Consultant

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Consultant

Machine Learning Consultant...

Machine Learning Consultant - Experienced

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.

Machine Learning Jobs UK 2025: 50 Companies Hiring Now

Bookmark this page—we refresh the Hotlist every quarter so you always know who’s really scaling their ML teams. The UK’s National AI Strategy, a £2 billion GenAI accelerator fund and a record flow of private capital have kicked ML hiring into overdrive for 2025. Whether you build production‑grade LLM services or optimise on‑device models for edge hardware, employers need your skills now. Below you’ll find 50 organisations that advertised UK‑based machine‑learning vacancies or announced head‑count growth during the past eight weeks. They’re grouped into five quick‑scan categories so you can jump straight to the type of employer—and mission—that excites you. For each company we list: Main UK hub Example live or recent vacancy Why it’s worth a look (stack, impact, culture) Search any employer on MachineLearningJobs.co.uk to see real‑time adverts, or set a free alert so fresh openings drop straight in your inbox.

Return-to-Work Pathways: Relaunch Your Machine Learning Career with Returnships, Flexible & Hybrid Roles

Returning to work after an extended break can feel like starting from scratch—especially in a specialist field like machine learning. Whether you paused your career for parenting, caring responsibilities or another life chapter, the UK’s machine learning sector now offers a variety of return-to-work pathways. From structured returnships to flexible and hybrid roles, these programmes recognise the transferable skills and resilience you’ve developed, pairing you with mentorship, upskilling and supportive networks to ease your transition back. In this guide, you’ll discover how to: Understand the current demand for machine learning talent in the UK Leverage your organisational, communication and analytical skills in ML contexts Overcome common re-entry challenges with practical solutions Refresh your technical knowledge through targeted learning Access returnship and re-entry programmes tailored to machine learning Find roles that fit around family commitments—whether flexible, hybrid or full-time Balance your career relaunch with caring responsibilities Master applications, interviews and networking specific to ML Learn from inspiring returner success stories Get answers to common questions in our FAQ section Whether you aim to return as an ML engineer, research scientist, MLOps specialist or data scientist with an ML focus, this article will map out the steps and resources you need to reignite your machine learning career.