Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

London Reporting House | Data Analyst

London Reporting House
London
11 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Pricing Data Scientist

Senior Pricing Data Scientist

Data Engineering Director

Senior Data Scientist - Pexels

Senior Data Scientist - Affinity

Data Analyst (Python) 


Overview 


LRH is on a mission to create a truly data-driven repo market. Backed by the Kaizen RegTech Group, our startup works with the world’s leading banks, asset managers and hedge funds to develop a pioneering data solution designed to enhance trading activities in the €23 trillion UK and European repo markets. Our innovation provides these financial institutions with an unprecedented perspective on market dynamics. 


https://londonreportinghouse.com  


Job Summary: 


We are seeking a motivated and detail-oriented Data Analyst to join our team starting immediately! This is an excellent opportunity for a recent graduate or someone early in their career to gain hands-on experience in data analysis and contribute to our data-driven decision-making processes. You will work closely with our data and engineering teams, and subject matter experts to analyse data, generate insights, and support various business functions. The role is on-site and you will be exposed to the business side of the organisation, as well as having an opportunity to get in front of clients and partners (quite a rare opportunity in the industry). 


Key Activities and Responsibilities: 


  • Collect, clean, and preprocess data from various sources. 
  • Perform exploratory analyses on financial data from real trades. 
  • Generate reports and visualisations to communicate findings to clients and stakeholders. 
  • Assist in the development and maintenance of dashboards and data tools. 
  • Cross-company collaboration to support data-driven projects and initiatives. 
  • Ensure data quality and integrity throughout. 


Experience and Qualifications: 


  • Bachelor’s degree with a quantitative component (e.g. Data Science, Statistics, Computer Science, Mathematics, Economics, Physics etc.), or equivalent experience. 
  • Proficiency in data analysis tools and languages (e.g. Python, R, SQL). 
  • Experience producing meaningful, informative data visualisations 
  • Strong analytical and problem-solving skills. 
  • Excellent attention to detail and organisational skills. 
  • Good communication and teamwork abilities. 
  • Eagerness to learn and adapt in a fast-paced fintech startup environment. 


Nice-to-haves: 


  • Internship or project experience in data modelling and analysis. 
  • Knowledge of statistical methods and techniques. 
  • Familiarity with cloud platforms (e.g. AWS, Google Cloud, Azure). 
  • Familiarity with business intelligence tools (e.g. Quicksight, Tableau, Power BI). 
  • Understanding of machine learning concepts. 
  • Interest in GenAI and its applications. 
  • Experience with version control systems (e.g. Git). 
  • Knowledge of the financial markets would be an asset. 


What you’ll get in return: 


  • A competitive salary package. 
  • Office in the heart of The City: 5-minute walking distance from Bank, Cannon Street and St. Paul's stations. 
  • Access to additional office space in London’s iconic Gherkin 5 minutes from Liverpool Street Station. 
  • 25 days’ holiday ️, as well as UK bank holidays. 
  • Well-being allowance. 
  • Build-your-skills ️ allowance. 
  • Private healthcare ❤️ + dental. 
  • Working within a fast-growing company that has a culture of empowerment, innovation and collaboration. 
  • Awesome team of financial markets experts, data analysts and engineers. 
  • Opportunity to play a key role in an exciting startup backed by the Kaizen RegTech Group. 
  • Opportunities for continuous career growth and learning. 

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.

Why Machine Learning Careers in the UK Are Becoming More Multidisciplinary

Machine learning (ML) has moved from research labs into mainstream UK businesses. From healthcare diagnostics to fraud detection, autonomous vehicles to recommendation engines, ML underpins critical services and consumer experiences. But the skillset required of today’s machine learning professionals is no longer purely technical. Employers increasingly seek multidisciplinary expertise: not only coding, algorithms & statistics, but also knowledge of law, ethics, psychology, linguistics & design. This article explores why UK machine learning careers are becoming more multidisciplinary, how these fields intersect with ML roles, and what both job-seekers & employers need to understand to succeed in a rapidly changing landscape.