Lead Data Scientist - Sanctions Screening

Wise
London
4 weeks ago
Applications closed

Related Jobs

View all jobs

Lead, Data Scientist (Deep Learning), Peacock Video Streaming Service

Senior Data Scientist

Principal Data Scientist - NLP

Data Science Manager – Gen/AI & ML Projects - Bristol

Data Science Manager

Senior Data Scientist - Outside IR35 Contract

Company Description

Wise is a global technology company, building the best way to move and manage the world’s money. Min fees. Max ease. Full speed.

Whether people and businesses are sending money to another country, spending abroad, or making and receiving international payments, Wise is on a mission to make their life easier and save them money.

As part of our team, you will be helping us create an entirely new network for the world's money. For everyone, everywhere.

More about .

Job Description

About the Role: 

Our screening team is responsible for sanctions, PEPs (Politically Exposed Persons) and Adverse Media screening. 

The screening team has a name matching service that is routinely tested against an internal benchmarking suite, and annually against external benchmarking suites. 

We are looking for someone to own the testing, tuning and optimisation of these matching algorithms. The candidate will own this function - be responsible for the overall testing and tuning strategy, deep dive testing results, understanding how to optimise rules for efficiency and effectiveness and create rules for complex controls.

Here’s how you’ll be contributing:

Automatising algorithm testing on real customer data as well as synthetic data. Packaging the service into a library or deploying it to staging or production environments

Benchmark testing

Analyse results from exact name matching and fuzzy name matching against internal and external benchmarks

Identify and categorise types of missed cases and map those to known or new issues

Propose technical solutions to reduce the number of missed cases identified

Benchmark creation

Design an internal test set to evaluate both the precision and recall of the screening engine

Align performance on the test set with real-life production performance

Extend internal benchmarking to new scenarios for better coverage of screening algorithms

Define an overall strategy for testing and tuning

Evaluate the use of an internal benchmarking tool 

Evaluate testing capabilities of external vendors in the market to define the most effective method of continuous external benchmarking, processes of governance 

Tailor business rules to reduce hit rate, prepare tuning data, reviewing hit reduction strategies and work with product managers, compliance and engineers to ensure roadmap alignment

Rule optimisation

Tweaking engine configuration to find the sweet spot for precision and recall.

Provide answers on how many historical true positives we would miss based on different optimisations

Work on advanced rules for complicated controls, such as vessel screening
 

Uncover and action on opportunities to help the Screening operational team scale

Automatising or creating solutions to assist operations in their work

Modify existing tooling introducing LLM assistants to improve the efficiency of agents and speed of case resolution

A bit about you: 

Experience implementing, testing and evaluating performance of multiple rules across systems;

Strong Python knowledge. Ability to read through code, especially Java. Demonstrable experience collaborating with engineering on services;

Strong algorithmic design and testing skills. A big plus for proven experience with name matching algorithms;

Experience with statistical analysis and good presentation skills to drive insight into action;

A strong product mindset with the ability to work independently in a cross-functional and cross-team environment;

Good communication skills and ability to get the point across to non-technical individuals;

Strong problem solving skills with the ability to help refine problem statements and figure out how to solve them.

Some extra skills that are great (but not essential):

Familiarity with automating operational processes through technical solution, for example Large Language Models;

Knowledge of Sanctions and Name Screening Optimisation and Tuning

Experience working in a heavily regulated business domain.

We’re people without borders — without judgement or prejudice, too. We want to work with the best people, no matter their background. So if you’re passionate about learning new things and keen to join our mission, you’ll fit right in.

Also, qualifications aren’t that important to us. If you’ve got great experience, and you’re great at articulating your thinking, we’d like to hear from you.

And because we believe that diverse teams build better products, we’d especially love to hear from you if you’re from an under-represented demographic.

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Contract vs Permanent Machine Learning Jobs: Which Pays Better in 2025?

Machine learning (ML) has swiftly become one of the most transformative forces in the UK technology landscape. From conversational AI and autonomous vehicles to fraud detection and personalised recommendations, ML algorithms are reshaping how organisations operate and how consumers experience products and services. In response, job opportunities in machine learning—including roles in data science, MLOps, natural language processing (NLP), computer vision, and more—have risen dramatically. Yet, as the demand for ML expertise booms, professionals face a pivotal choice about how they want to work. Some choose day‑rate contracting, leveraging short-term projects for potentially higher immediate pay. Others embrace fixed-term contract (FTC) roles for mid-range stability, or permanent positions for comprehensive benefits and a well-defined career path. In this article, we will explore these different employment models, highlighting the pros and cons of each, offering sample take‑home pay scenarios, and providing insights into which path might pay better in 2025. Whether you’re a new graduate with a machine learning degree or an experienced practitioner pivoting into an ML-heavy role, understanding these options is key to making informed career decisions.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.