Lead Data Scientist - Sanctions Screening

Wise
London
1 month ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Senior Data Scientist

Data Science Manager – Gen/AI & ML Projects - Bristol

Data Engineer

Data Engineer - Reigate

Product Manager

Company Description

Wise is a global technology company, building the best way to move and manage the world’s money. Min fees. Max ease. Full speed.

Whether people and businesses are sending money to another country, spending abroad, or making and receiving international payments, Wise is on a mission to make their life easier and save them money.

As part of our team, you will be helping us create an entirely new network for the world's money. For everyone, everywhere.

More about .

Job Description

About the Role: 

Our screening team is responsible for sanctions, PEPs (Politically Exposed Persons) and Adverse Media screening. 

The screening team has a name matching service that is routinely tested against an internal benchmarking suite, and annually against external benchmarking suites. 

We are looking for someone to own the testing, tuning and optimisation of these matching algorithms. The candidate will own this function - be responsible for the overall testing and tuning strategy, deep dive testing results, understanding how to optimise rules for efficiency and effectiveness and create rules for complex controls.

Here’s how you’ll be contributing:

Automatising algorithm testing on real customer data as well as synthetic data. Packaging the service into a library or deploying it to staging or production environments

Benchmark testing

Analyse results from exact name matching and fuzzy name matching against internal and external benchmarks

Identify and categorise types of missed cases and map those to known or new issues

Propose technical solutions to reduce the number of missed cases identified

Benchmark creation

Design an internal test set to evaluate both the precision and recall of the screening engine

Align performance on the test set with real-life production performance

Extend internal benchmarking to new scenarios for better coverage of screening algorithms

Define an overall strategy for testing and tuning

Evaluate the use of an internal benchmarking tool 

Evaluate testing capabilities of external vendors in the market to define the most effective method of continuous external benchmarking, processes of governance 

Tailor business rules to reduce hit rate, prepare tuning data, reviewing hit reduction strategies and work with product managers, compliance and engineers to ensure roadmap alignment

Rule optimisation

Tweaking engine configuration to find the sweet spot for precision and recall.

Provide answers on how many historical true positives we would miss based on different optimisations

Work on advanced rules for complicated controls, such as vessel screening
 

Uncover and action on opportunities to help the Screening operational team scale

Automatising or creating solutions to assist operations in their work

Modify existing tooling introducing LLM assistants to improve the efficiency of agents and speed of case resolution

A bit about you: 

Experience implementing, testing and evaluating performance of multiple rules across systems;

Strong Python knowledge. Ability to read through code, especially Java. Demonstrable experience collaborating with engineering on services;

Strong algorithmic design and testing skills. A big plus for proven experience with name matching algorithms;

Experience with statistical analysis and good presentation skills to drive insight into action;

A strong product mindset with the ability to work independently in a cross-functional and cross-team environment;

Good communication skills and ability to get the point across to non-technical individuals;

Strong problem solving skills with the ability to help refine problem statements and figure out how to solve them.

Some extra skills that are great (but not essential):

Familiarity with automating operational processes through technical solution, for example Large Language Models;

Knowledge of Sanctions and Name Screening Optimisation and Tuning

Experience working in a heavily regulated business domain.

We’re people without borders — without judgement or prejudice, too. We want to work with the best people, no matter their background. So if you’re passionate about learning new things and keen to join our mission, you’ll fit right in.

Also, qualifications aren’t that important to us. If you’ve got great experience, and you’re great at articulating your thinking, we’d like to hear from you.

And because we believe that diverse teams build better products, we’d especially love to hear from you if you’re from an under-represented demographic.

Additional Information

For everyone, everywhere. We're people building money without borders — without judgement or prejudice, too. We believe teams are strongest when they are diverse, equitable and inclusive.

We're proud to have a truly international team, and we celebrate our differences.
Inclusive teams help us live our values and make sure every Wiser feels respected, empowered to contribute towards our mission and able to progress in their careers.

If you want to find out more about what it's like to work at Wise visit .

Keep up to date with life at Wise by following us on and .

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.