Lead Data Scientist - Healthcare

Kainos
City of London
1 week ago
Applications closed

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Join to apply for the Lead Data Scientist - Healthcare role at Kainos.


Join Kainos and shape the future. At Kainos, we’re problem solvers, innovators and collaborators – driven by a shared mission to create real impact. Whether we’re transforming digital services for millions, delivering cutting‑edge Workday solutions or pushing the boundaries of technology, we do it together.


Main Purpose of the Role & Responsibilities

As a Lead Data Scientist, you will architect, design and deliver advanced AI solutions using state‑of‑the‑art machine learning, generative and agentic AI technologies. You’ll champion modern AI frameworks, AIOps best practices and scalable cloud‑native architectures. The role involves hands‑on technical leadership and collaboration with customers to translate business challenges into trustworthy AI solutions, ensuring responsible AI practices throughout. You will mentor a small team, manage performance, and provide strategic direction while solving complex problems.


Minimum (essential) Requirements

  • A minimum of a 2.1 degree in Computer Science, AI, Data Science, Statistics or a similar quantitative field.
  • Deep understanding and experience developing AI/ML models, including time‑series, supervised/unsupervised learning, reinforcement learning and LLMs.
  • Experience with the latest AI engineering approaches such as prompt engineering, retrieval‑augmented generation (RAG) and agentic AI.
  • Strong Python skills with a grounding in software engineering best practices (CI/CD, testing, code reviews, etc.).
  • Expertise in data engineering for AI: handling large‑scale, unstructured and multimodal data.
  • Understanding of responsible AI principles, model interpretability and ethical considerations.
  • Strong interpersonal skills with the ability to lead client projects and translate requirements into non‑technical language.
  • Experience managing, coaching and developing junior team members and the wider community.

Desirable

  • Demonstrable experience with modern deep learning frameworks (e.g. PyTorch, TensorFlow), fine‑tuning or distillation of LLMs (e.g. GPT, Llama, Claude, Gemini), and ML libraries (e.g. scikit‑learn, XGBoost).
  • Experience with AI data storage, vector databases, semantic search and knowledge graphs.
  • Contributions to open‑source AI projects or research publications.
  • Familiarity with AI security, privacy and compliance standards e.g. ISO42001.

Embracing our differences

At Kainos, we believe in the power of diversity, equity and inclusion. We are committed to building a team that is as diverse as the world we live in, where everyone is valued, respected and given an equal chance to thrive. If you require accommodations or adjustments, please reach out – we are happy to support you.


We understand that everyone's journey is different, and by having a private conversation we can ensure that our recruitment process is tailored to your needs.


#J-18808-Ljbffr

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.