Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Lead Data Scientist

GE Vernova
Stafford
23 hours ago
Create job alert

Job Description Summary

We are seeking a Lead Data Scientist with solid experience typically gained over a minimum of 5 years in large multinational companies within the energy sector or related industrial domains such as smart infrastructure or industrial automation. The ideal candidate has hands-on experience in AI/ML model testing, verification, and validation in complex, data-rich environments.

In this position, you will be responsible for testing, verifying, and validating advanced AI/ML models for grid innovation, and for contributing to the development of robust validation frameworks across edge and cloud environments. You will collaborate closely with R&D, product teams, and other business units to support the development of effective, reliable, and high-impact AI/ML solutions.

Job Description

Essential Responsibilities:

  • Design and conduct experiments to test and validate AI/ML models in the context of energy systems and grid automation applications.
  • Establish clear validation frameworks to ensure models meet required performance standards and business objectives.
  • Establish test procedures to validate models with real and simulated grid data.
  • Analyze model performance against real-world data to ensure accuracy, reliability, and scalability.
  • Identify and address discrepancies between expected and actual model behavior, providing actionable insights to improve model performance.
  • Implement automated testing strategies and pipeline to streamline model validation processes.
  • Collaborate with Data Engineers and ML Engineers to improve data quality, enhance model performance, and ensure efficient deployment of validated models.
  • Ensure that validation processes adhere to data governance policies and industry standards.
  • Communicate validation results, insights, and recommendations clearly to stakeholders, including product managers and leadership teams.

Must-Have Requirements

  • Experience typically gained over +5 years in large multinational companies within the energy sector or related industrial domains such as smart infrastructure or industrial automation.
  • Master’s, or Bachelor’s degree in Data Science, Computer Science, Electrical Engineering, or a related field, with hands-on experience in model validation.
  • Solid experience in validating AI/ML models, ensuring they meet business and technical requirements.
  • Strong knowledge of statistical techniques, model performance metrics, and AI/ML validation methodologies.
  • Proficiency in programming languages such as Python, R, or MATLAB.
  • Experience with data wrangling, feature engineering, and dataset preparation for model validation.
  • Familiarity with machine learning frameworks (e.g., TensorFlow, PyTorch, Scikit-learn) and model evaluation techniques.
  • Experience with cloud platforms (e.g., AWS, Azure, GCP) and deploying models in cloud environments.
  • Experience with data visualization tools (e.g., Tableau, Power BI) to effectively present validation results and insights.

Nice-to-Have Requirements

  • Familiarity with big data tools and technologies such as Hadoop, Kafka, and Spark.
  • Knowledge of data governance frameworks and validation standards in the energy sector.
  • Understanding of distributed computing environments and large-scale model deployment.
  • Strong communication skills, with the ability to clearly explain complex validation results to non-technical stakeholders.

At GE Vernova - Grid Automation, you will have the opportunity to work on cutting-edge projects that shape the future of energy. We offer a collaborative environment where your expertise will be valued, and your contributions will make a tangible impact. Join us and be part of a team that is driving innovation and excellence in control systems.

About GEV Grid Solutions

At GEV Grid Solutions we are electrifying the world with advanced grid technologies. As leaders in the energy space our goal is to accelerate the transition for a more energy efficient grid to full fill the needs of tomorrow. With a focus on growth and sustainability GE Grid Solutions plays a pivotable role in integrating Renewables onto the grid to drive to carbon neutral. In Grid Solutions we help enable the transition for a greener more reliable Grid. GE Grid Solutions has the most advanced and comprehensive product and solutions portfolio within the energy sector.

Why We Come To Work

At GEV, our engineers are always up for the challenge - and we’re always driven to find the best solution. Our projects are unique and interesting, and you’ll need to bring a solution-focused, positive approach to each one to do your best. Surrounded by committed, loyal colleagues, if you can dare to bring your ingenuity and desire to make an impact, you’ll be exposed to game-changing, diverse projects that truly allow you to play your part in the energy transition.

What We Offer

A key role in a dynamic, international working environment with a large degree of flexibility of work agreements

Competitive benefits, and great development opportunities - including private health insurance.

Additional Information

Relocation Assistance Provided: No

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.

Machine Learning Recruitment Trends 2025 (UK): What Job Seekers Need To Know About Today’s Hiring Process

Summary: UK machine learning hiring has shifted from title‑led CV screens to capability‑driven assessments that emphasise shipped ML/LLM features, robust evaluation, observability, safety/governance, cost control and measurable business impact. This guide explains what’s changed, what to expect in interviews & how to prepare—especially for ML engineers, applied scientists, LLM application engineers, ML platform/MLOps engineers and AI product managers. Who this is for: ML engineers, applied ML/LLM engineers, LLM/retrieval engineers, ML platform/MLOps/SRE, data scientists transitioning to production ML, AI product managers & tech‑lead candidates targeting roles in the UK.