Lead Data Scientist

London
1 day ago
Create job alert

Lead Data Scientist, Telematics and Insurance

London. Hybrid 1 to 2 days onsite

Salary up to £110,000 plus bonus and benefits

Working exclusively with my client, this role exists due to business expansion. The data science function launched in early 2023 and focuses on pricing and telematics driven products. The team already delivered over 20 percent profitability uplift across core insurance products using price optimisation models.

The role owns data structure and value extraction from large scale telematics data. The focus sits on turning driving behaviour into clear pricing and operational decisions for insurance products.

The business operates a champion challenger framework. The team delivers frequent model improvements through strong code standards and repeatable processes. Work happens at pace and at scale.

What you will do:

You will lead technical delivery across telematics data science. You will shape how data turns into pricing value and operational insight across the wider business.

Day to day responsibilities

  • Design and deliver analytical solutions using telematics data

  • Lead development of scoring and pricing algorithms

  • Own end to end machine learning pipelines from data through production

  • Work hands on with Python and Databricks

  • Build repeatable and product agnostic training and serving frameworks

  • Translate model outputs into clear guidance for pricing, operations, and finance

  • Provide technical leadership and mentoring

  • Challenge existing approaches within insurance pricing

  • Take full ownership of delivery approach and outcomes

    Technology environment

  • Python

  • Databricks

  • Large scale and streaming data

  • Spark or Kafka style processing

  • Tree based models and deep neural networks

  • Production grade machine learning systems

    What my client look for

    Essential experience

  • Senior level data science delivery

  • Large scale or time series data

  • End to end machine learning delivery in production

  • Strong Python engineering

  • Solid statistical foundations

  • Proven commercial impact from models delivered

    Desirable experience

  • Telematics or sensor based data

  • Insurance or pricing domain exposure

  • Experience leading small teams

  • Evidence of idea generation and product thinking

    What you will work on over the next 6 to 12 months

  • Core telematics pricing models

  • Expansion into fleet and taxi products

  • New data driven insurance propositions

  • Shaping long term data science strategy

  • Building a team around this capability

    Why join

    This role offers full ownership of a high growth data product. The business doubled in size recently and plans further growth. You influence tooling, platforms, and technical direction. You build long term capability and there is an opportunity to grow a team further down the line.

    Please apply for more information if this sounds like a role for you

Related Jobs

View all jobs

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Lead Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for Machine Learning Jobs: The Only Topics You Actually Need (& How to Learn Them)

Machine learning job adverts in the UK love vague phrases like “strong maths” or “solid fundamentals”. That can make the whole field feel gatekept especially if you are a career changer or a student who has not touched maths since A level. Here is the practical truth. For most roles on MachineLearningJobs.co.uk such as Machine Learning Engineer, Applied Scientist, Data Scientist, NLP Engineer, Computer Vision Engineer or MLOps Engineer with modelling responsibilities the maths you actually use is concentrated in four areas: Linear algebra essentials (vectors, matrices, projections, PCA intuition) Probability & statistics (uncertainty, metrics, sampling, base rates) Calculus essentials (derivatives, chain rule, gradients, backprop intuition) Basic optimisation (loss functions, gradient descent, regularisation, tuning) If you can do those four things well you can build models, debug training, evaluate properly, explain trade-offs & sound credible in interviews. This guide gives you a clear scope plus a six-week learning plan, portfolio projects & resources so you can learn with momentum rather than drowning in theory.

Neurodiversity in Machine Learning Careers: Turning Different Thinking into a Superpower

Machine learning is about more than just models & metrics. It’s about spotting patterns others miss, asking better questions, challenging assumptions & building systems that work reliably in the real world. That makes it a natural home for many neurodivergent people. If you live with ADHD, autism or dyslexia, you may have been told your brain is “too distracted”, “too literal” or “too disorganised” for a technical career. In reality, many of the traits that can make school or traditional offices hard are exactly the traits that make for excellent ML engineers, applied scientists & MLOps specialists. This guide is written for neurodivergent ML job seekers in the UK. We’ll explore: What neurodiversity means in a machine learning context How ADHD, autism & dyslexia strengths map to ML roles Practical workplace adjustments you can ask for under UK law How to talk about neurodivergence in applications & interviews By the end, you’ll have a clearer sense of where you might thrive in ML – & how to turn “different thinking” into a genuine career advantage.

Machine Learning Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we move into 2026, the machine learning jobs market in the UK is going through another big shift. Foundation models and generative AI are everywhere, companies are under pressure to show real ROI from AI, and cloud costs are being scrutinised like never before. Some organisations are slowing hiring or merging teams. Others are doubling down on machine learning, MLOps and AI platform engineering to stay competitive. The end result? Fewer fluffy “AI” roles, more focused machine learning roles with clear ownership and expectations. Whether you are a machine learning job seeker planning your next move, or a recruiter trying to build ML teams, understanding the key machine learning hiring trends for 2026 will help you stay ahead.