National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Lead Data Engineer (Apply Now)...

J.P. MORGAN-1
Weymouth
2 days ago
Create job alert

Job Description

Job Description

Join us as we embark on a journey of collaboration and innovation, where your unique skills and talents will be valued and celebrated. Together we will create a brighter future and make a meaningful difference.

As a Lead Data Engineer at JPMorgan Chase within the Infrastructure Platforms organization, you are an integral part of an agile team that works to enhance, build, and deliver data collection, storage, access, and analytics solutions in a secure, stable, and scalable way. As a core technical contributor, you are responsible for maintaining critical data pipelines and architectures across multiple technical areas within various business functions in support of the firm's business objectives.

Job responsibilities

  • Data Modeling : Develop and maintain data models using firmwide tooling, linear algebra, statistics, and geometrical algorithms.
  • Data Platform Solutions : Design and implement secure, stable, and scalable data collection, storage, access, and analytics solutions.
  • Data Pipeline Development : Define and create robust data pipelines for ingestion, processing, and transformation.
  • Data Warehouse Design : Model and design future data warehouse architecture for business intelligence and analytics.
  • Stakeholder Collaboration : Work with stakeholders and key partners to understand and solve their data needs.
  • Innovation and Best Practices : Stay updated on industry trends and implement best practices for data management.

    Required qualifications, capabilities, and skills

  • Formal training or certification on data analysis tools and techniques concepts and proficient advanced experience
  • Proficiency in data analysis tools and techniques
  • Experience with data visualization tools like Tableau, Power BI, or similar
  • Working experience with both relational and NoSQL databases​
  • Experience and proficiency across the data lifecycle
  • Experience with database back-up, recovery, and archiving strategy
  • Proficient knowledge of linear algebra, statistics, and geometrical algorithms
  • Knowledge of data warehousing solutions like Amazon Redshift, Snowflake or Databricks.

    Preferred Qualifications

  • Understanding of machine learning concepts and tools is a plus.

    About Us

    J.P. Morgan is a global leader in financial services, providing strategic advice and products to the world's most prominent corporations, governments, wealthy individuals and institutional investors. Our first-class business in a first-class way approach to serving clients drives everything we do. We strive to build trusted, long-term partnerships to help our clients achieve their business objectives.

    We recognize that our people are our strength and the diverse talents they bring to our global workforce are directly linked to our success. We are an equal opportunity employer and place a high value on diversity and inclusion at our company. We do not discriminate on the basis of any protected attribute, including race, religion, color, national origin, gender, sexual orientation, gender identity, gender expression, age, marital or veteran status, pregnancy or disability, or any other basis protected under applicable law. We also make reasonable accommodations for applicants' and employees' religious practices and beliefs, as well as mental health or physical disability needs. Visit our FAQs for more information about requesting an accommodation.

    About The Team

    Our professionals in our Corporate Functions cover a diverse range of areas from finance and risk to human resources and marketing. Our corporate teams are an essential part of our company, ensuring that we're setting our businesses, clients, customers and employees up for success.

Related Jobs

View all jobs

Lead Data Engineering (Snowhill, Birmingham, United Kingdom)

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

Lead Data Engineer

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.

Machine Learning Jobs Salary Calculator 2025: Figure Out Your True Worth in Seconds

Why last year’s pay survey is useless for UK ML professionals today Ask a Machine Learning Engineer wrangling transformer checkpoints, an MLOps Lead firefighting drift alarms, or a Research Scientist training diffusion models at 3 a.m.: “Am I earning what I deserve?” The honest answer changes monthly. A single OpenAI model drop doubles GPU demand, healthcare regulators release fresh explainability guidance, & a fintech unicorn pays six figures for vector‑search expertise. Each shock nudges salary bands. Any PDF salary guide printed in 2024 now looks like an outdated Jupyter notebook—missing the gen‑AI tsunami, the surge in edge inference, & the UK’s new Responsible‑AI framework. To give ML professionals an accurate benchmark, MachineLearningJobs.co.uk distilled a transparent, three‑factor formula that estimates a realistic 2025 salary in under a minute. Feed in your discipline, UK region, & seniority; you’ll receive a defensible figure—no stale averages, no guesswork. This article unpacks the formula, highlights the forces driving ML pay skyward, & offers five practical moves to boost your value inside the next ninety days.

How to Present Machine Learning Solutions to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

Machine learning is driving change across nearly every industry—from retail and finance to health and logistics. But while the technology continues to evolve rapidly, the ability to communicate it clearly has become just as important as building the models themselves. Whether you're applying for a junior ML engineer role, a research position, or a client-facing AI consultant job, UK employers increasingly expect candidates to explain complex machine learning solutions to non-technical audiences. In this guide, you’ll learn how to confidently present your work, structure your message, use simple visuals, and explain the real-world value of machine learning in a way that makes sense to people without a background in data science.