Lead Architect

Qurated Network
Liverpool
1 week ago
Create job alert

Lead Architect - AI/ML | Tier 1 UK Bank


As part of the overarching bank strategy placed by the CIO, this Tier 1 bank have undergone massive growth within Data & Analytics over the last 3-4 years, growing from 1700 to now over 3000 members within the team today.

This transformation of how data is managed and used across the enterprise involves modernisation including Data Warehouse, Customer Analytics, and other core data platforms. This strategy underpins the banks efforts to innovate across the use of data within financial services further showcased by their pioneering of AI within the UK Banking industry.


In this role, you will have the opportunity to join a growing function and set up the AI strategy and architecture from scratch.


Experience

  • Understand Gen AI, and Machine learning - needs to be fully invested in the AI Landscape and own the future roadmap
  • Hands-on experience with roadmap design and architecture frameworks
  • Have managed or lead other architects
  • Management of data on cloud and on-premise
  • Understanding of Large Language models and experience within a Data Science team or landscape


Technical Experience

  • AWS suite and native capabilities
  • Python and Java
  • Experience managing enterprise, solution, BI/MI and ML data models
  • An understanding of industry architecture frameworks, such as TOGAF and ArchiMate
  • Experience and knowledge of industry data modelling frameworks Relational, ER, NoSQL covering Document, Key-Value, Column, and Graph, Event Modelling, Data Class Modelling, Ontology Modelling, Data Vault and Hybrid Data Modelling


This is apermanentrole with hybrid working based in eitherManchester, Edinburgh or London.

Related Jobs

View all jobs

Principal Data Scientist - Generative AI

Principal Data Scientist - Generative AI

Lead IT Architect - Platinion - Salesforce/CRM

Lead Data Architect

Lead Data Architect

Data Architect - Contract

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Tips for Staying Inspired: How Machine Learning Pros Fuel Creativity and Innovation

Machine learning (ML) continues to reshape industries—from personalised e-commerce recommendations and autonomous vehicles to advanced healthcare diagnostics and predictive maintenance in manufacturing. Yet behind every revolutionary model lies a challenging and sometimes repetitive process: data cleaning, hyperparameter tuning, infrastructure management, stakeholder communications, and constant performance monitoring. It’s no wonder many ML professionals can experience creative fatigue or get stuck in the daily grind. So, how do machine learning experts keep their spark alive and continually generate fresh ideas? Below, you’ll find ten actionable strategies that successful ML engineers, data scientists, and research scientists use to stay innovative and push boundaries. Whether you’re an experienced practitioner or just breaking into the field, these tips can help you fuel creativity and discover new angles for solving complex problems.

Top 10 Machine Learning Career Myths Debunked: Key Facts for Aspiring Professionals

Machine learning (ML) has become one of the hottest fields in technology—touching everything from recommendation engines and self-driving cars to language translation and healthcare diagnostics. The immense potential of ML, combined with attractive compensation packages and high-profile success stories, has spurred countless professionals and students to explore this career path. Yet, despite the boom in demand and innovation, machine learning is not exempt from myths and misconceptions. At MachineLearningJobs.co.uk, we’ve had front-row seats to the real-life career journeys and hiring needs in this field. We see, time and again, that outdated assumptions—like needing a PhD from a top university or that ML is purely about deep neural networks—can mislead new entrants and even deter seasoned professionals from making a successful transition. If you’re curious about a career in machine learning or looking to take your existing ML expertise to the next level, this article is for you. Below, we debunk 10 of the most persistent myths about machine learning careers and offer a clear-eyed view of the essential skills, opportunities, and realistic paths forward. By the end, you’ll be better equipped to make informed decisions about your future in this dynamic and rewarding domain.

Global vs. Local: Comparing the UK Machine Learning Job Market to International Landscapes

How to evaluate opportunities, salaries, and work culture in machine learning across the UK, the US, Europe, and Asia Machine learning (ML) has rapidly transcended the research labs of academia to become a foundational pillar of modern technology. From recommendation engines and autonomous vehicles to fraud detection and personalised healthcare, machine learning techniques are increasingly ubiquitous, transforming how organisations operate. This surge in applications has fuelled an extraordinary global demand for ML professionals—data scientists, ML engineers, research scientists, and more. In this article, we’ll examine how the UK machine learning job market compares to prominent international hubs, including the United States, Europe, and Asia. We’ll explore hiring trends, salary ranges, workplace cultures, and the nuances of remote and overseas roles. Whether you’re a fresh graduate aiming to break into the field, a software engineer with an ML specialisation, or a seasoned professional seeking your next challenge, understanding the global ML landscape is essential for making an informed career move. By the end of this overview, you’ll be equipped with insights into which regions offer the best blend of salaries, work-life balance, and cutting-edge projects—plus practical tips on how to succeed in a domain that’s constantly evolving. Let’s dive in.