Junior Data Scientist

Artefact
england, ecr eb
6 months ago
Create job alert

Location:London, UK (Hybrid)
Type:Full-Time

Who we are

Artefact is a new generation of data service provider, specialising in data-driven consulting and data-driven digital marketing. We are dedicated to transforming data into business impact across the entire value chain of organisations. With skyrocketing growth, Artefact has established a global presence with over 1,000 employees across 20 offices worldwide.

Our data-driven solutions are designed to meet the specific needs of our clients, leveraging our deep AI expertise and innovative methodologies. Our cohesive teams of data scientists, engineers, and consultants are focused on accelerating digital transformation, ensuring tangible results for every client.

Role Profile

A Data Scientist at Artefact will work together with consultants as a joint team on client projects. Leverage machine learning, AI, and statistical techniques to solve specific business problems.

Responsibilities

Develop and maintain code to deliver data science solutions. Work together with business consultants to understand and document client needs. Follow a structured skill development program aimed at advancing to a Senior Data Scientist role. Contribute to ongoing research and academic initiatives. Simplify and communicate technical concepts to non-technical stakeholders.

Required skills

Data: Design and implement storage solutions with SQL, NoSQL, cloud storage, data versioning, validation, and advanced dataframe handling (Polars/PySpark).Python: Utilise virtual environments, object-oriented programming, data classes, and data manipulation libraries for scripting and visualisation.Repository: Manage code with single-branch PRs/MRs, CI/CD pipelines, pre-commit hooks, and Markdown documentation for building, testing, and deploying.Cloud: Leverage cloud infrastructure (e.g., AWS EC2), databases, and configuration with markup files for remote management and deployment.Model: Implement models (e.g., linear regression, gradient boosting) with training/testing datasets, cross-validation, performance visualisation, and use hosted APIs; explore techniques like time-series forecasting, clustering, or Bayesian inference.Orchestration and Parallelisation: Manage workflows with tools like Metaflow, MLFlow, AirFlow, or DVC; utilise parallelisation frameworks like PySpark or Ray for efficient model processing.

Desirable skills

A Master’s degree in a quantitative field Exposure to cloud platforms (AWS, Azure, GCP)

Why you should join us

Artefact is revolutionizing marketing:join us to build the future of marketingProgress: every day offers new challenges and new opportunities to learnCulture:Check out our website (Artefact.com) or Instagram (Artefact UK) to find out more about our diverse, vibrant culture hereEntrepreneurship: you will be joining a team of driven entrepreneurs. We won’t give up until we make a huge dent in this industry!

Hit apply, and see whether what we offer is what you’ve been looking for!

Related Jobs

View all jobs

Senior Data Scientist

Principal Data Scientist - NLP

Senior Data Scientist - Crypto

Senior Data Scientist - Crypto

Senior Data Scientist - Crypto

Senior Data Scientist – Machine Learning -  Defence –Eligible for SC

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine‑Learning Jobs for Non‑Technical Professionals: Where Do You Fit In?

The Model Needs More Than Math When ChatGPT went viral and London start‑ups raised seed rounds around “foundation models,” many professionals asked, “Do I need to learn PyTorch to work in machine learning?” The answer is no. According to the Turing Institute’s UK ML Industry Survey 2024, 39 % of advertised ML roles focus on strategy, compliance, product or operations rather than writing code. As models move from proof‑of‑concept to production, demand surges for specialists who translate algorithms into business value, manage risk and drive adoption. This guide reveals the fastest‑growing non‑coding ML roles, the transferable skills you may already have, real transition stories and a 90‑day action plan—no gradient descent necessary.

Quantexa Machine‑Learning Jobs in 2025: Your Complete UK Guide to Joining the Decision‑Intelligence Revolution

Money‑laundering rings, sanctioned entities, synthetic identities—complex risks hide in plain sight inside data. Quantexa, a London‑born scale‑up now valued at US $2.2 bn (Series F, August 2024), solves that problem with contextual decision‑intelligence (DI): graph analytics, entity resolution and machine learning stitched into a single platform. Banks, insurers, telecoms and governments from HSBC to HMRC use Quantexa to spot fraud, combat financial crime and optimise customer engagement. With the launch of Quantexa AI Studio in February 2025—bringing generative AI co‑pilots and large‑scale Graph Neural Networks (GNNs) to the platform—the company is hiring at record pace. The Quantexa careers portal lists 450+ open roles worldwide, over 220 in the UK across data science, software engineering, ML Ops and client delivery. Whether you are a graduate data scientist fluent in Python, a Scala veteran who loves Spark or a solutions architect who can turn messy data into knowledge graphs, this guide explains how to land a Quantexa machine‑learning job in 2025.

Machine Learning vs. Deep Learning vs. MLOps Jobs: Which Path Should You Choose?

Machine Learning (ML) continues to transform how businesses operate, from personalised product recommendations to automated fraud detection. As ML adoption accelerates in nearly every industry—finance, healthcare, retail, automotive, and beyond—the demand for professionals with specialised ML skills is surging. Yet as you browse Machine Learning jobs on www.machinelearningjobs.co.uk, you may encounter multiple sub-disciplines, such as Deep Learning and MLOps. Each of these fields offers unique challenges, requires a distinct skill set, and can lead to a rewarding career path. So how do Machine Learning, Deep Learning, and MLOps differ? And which area best aligns with your talents and aspirations? This comprehensive guide will define each field, highlight overlaps and differences, discuss salary ranges and typical responsibilities, and explore real-world examples. By the end, you’ll have a clearer vision of which career track suits you—whether you prefer building foundational ML models, pushing the boundaries of neural network performance, or orchestrating robust ML pipelines at scale.