Inventory Management Data Analyst

Christchurch
2 months ago
Applications closed

Related Jobs

View all jobs

Inventory Data Analyst

Data & Insights Analyst

Data Scientist

Supply Chain Data Analyst CGT

Supply Data Analyst

Supply Chain Analyst

Job Title: Inventory Management Data Analyst

Location: Christchurch, Dorset

On site / Full-time / Permanent

Salary: DOE

Job Summary:

We're looking for a detail-oriented Inventory Management Data Analyst to optimise stock levels, forecast demand, and enhance our global supply chain. You'll analyse sales trends, minimise stockouts, and collaborate with Operations and Logistics teams to drive efficiency. If you have strong analytical skills, experience in inventory management, and a proactive mindset, this role offers the chance to make a real impact in a fast-growing, dynamic environment.

Key Responsibilities:

Forecasting: Use historical data, market trends, and sales patterns to predict future product demand across different regions and channels.
Inventory Management: Monitor stock levels to ensure a balance between supply and demand, working to minimise stockouts and excess inventory.
Data Analysis: Analyse sales data and inventory performance to generate actionable insights, adjusting forecasts based on actual performance.
Collaboration: Work closely with the Operations and Marketing team members to ensure forecasts align with production and shipping schedules.
Reporting: Regularly update key stakeholders with reports on stock performance, forecast accuracy, and areas for improvement.
Process Improvement: Proactively identify inefficiencies in current stock control systems and suggest enhancements to optimise our operations.
Market Insights: Stay informed on market trends, seasonal changes, and customer demands to ensure our forecasts align with external factors.What we're looking for:

Experience: Minimum of 2-3 years of experience and a Degree in Business, Mathematics, Statistics, Data Science or other quantitative discipline.
Analytical Skills: Ability to analyse complex data, identify patterns, and make data-driven decisions - preferably in fields related to inventory management within a global, e-commerce-driven business.
Attention to Detail: Ability to spot potential stock issues before they arise and take corrective action.
Communication: Strong communication skills to interact with cross-functional teams and stakeholders at all levels.
Tech-Savvy: Familiarity with inventory management systems and forecasting software; strong experience with Excel is a must, proficiency with SQL, dbt, Python or R is a strong plus.
Proactive & Problem-Solving Mindset: You'll need to be proactive in identifying issues and finding solutions to streamline our operations and support our rapid growth.
Global Perspective: Experience in working with international markets is a plus, and understanding how to manage stock in a global supply chain is a key advantage.Why this role is exciting:

This role offers the chance to shape a fast-growing global supply chain, ensuring products reach customers seamlessly. You'll work with cutting-edge data, influence decision-making, and collaborate across teams to optimise inventory strategies. With opportunities to drive process improvements, expand into new markets, and make a tangible impact on efficiency, this is an exciting opportunity for an analytical thinker eager to solve challenges in a dynamic, high-growth environment.

Benefits:

Exciting travel opportunities and 'money can't buy' experiences.
An opportunity to be part of a passionate, innovative, and fast-growing company.
Work with a diverse team of experts in sports science, nutrition, and tech.
The chance to contribute to the development of a company making a real impact in the world of sports.INDCP

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.