Head of Engineering (Python)

XCEDE Recruitment Solutions
London
4 months ago
Applications closed

Related Jobs

View all jobs

Senior Lecturer in Computer Science (Data Science)

Lead Data Engineer

Senior Python Developer

Head of Software Engineering | £150k – Java, Machine Learning, and Data-Driven Innovation

Head of Data Engineering

Head of Data Engineering

Head of Engineering - MedTech Start-UpWe are a London based AI MedTech start-up company leveraging computer vision to transform the medical industry. Our mission is to deliver innovative solutions that drive efficiency, accuracy, and scalability to save stakeholders at all levels, time and money.Role Overview

Is this your next job Read the full description below to find out, and do not hesitate to make an application.As the Head of Engineering, you will lead a talented and dynamic engineering team to drive the development and delivery of world-class AI-powered solutions. This is a unique opportunity to shape the technical strategy of a fast-growing organisation, blending strategic leadership with hands-on technical contributions to ensure the success of our platform and solutions.Key ResponsibilitiesDefine and execute the engineering vision, ensuring alignment with the company's broader goals and objectives.Lead, mentor, and grow a team of engineers across various disciplines, fostering a collaborative and high-performance culture.Oversee the development lifecycle of core products, from ideation to deployment, ensuring scalability, security, and reliability.Provide technical expertise, contributing to key architectural decisions and occasionally rolling up your sleeves to solve complex challenges.Stay ahead of technological trends, identifying opportunities for innovation and ensuring our tech stack remains modern and competitive.Partner with cross-functional teams, including product, data science, and operations, to deliver exceptional solutions to clients.Establish and optimise engineering processes, tools, and best practices to enhance productivity and quality.What We're Looking ForProven track record as an engineering leader, ideally in a tech-forward, product-driven company.Strong background in Python software development, architecture, and system design, with a preference for experience in AI, machine learning, or data-intensive platforms.Demonstrated ability to inspire and guide engineering teams, with a focus on fostering a culture of innovation, collaboration, and accountability.Hands-on approach to solving complex technical challenges and implementing practical, scalable solutions.Excellent interpersonal skills, capable of articulating technical concepts to both technical and non-technical stakeholders.Degree in Computer Science, Engineering, or a related field, or equivalent professional experience.Why Join Us?Be at the forefront of innovation in a high-growth industry.Lead and shape the future of a talented engineering team.Work on challenging and impactful projects that make a difference.Enjoy a collaborative, flexible, and inclusive work environment.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for Machine Learning Jobs (With Real GitHub Examples)

In today’s data-driven landscape, the field of machine learning (ML) is one of the most sought-after career paths. From startups to multinational enterprises, organisations are on the lookout for professionals who can develop and deploy ML models that drive impactful decisions. Whether you’re an aspiring data scientist, a seasoned researcher, or a machine learning engineer, one element can truly make your CV shine: a compelling portfolio. While your CV and cover letter detail your educational background and professional experiences, a portfolio reveals your practical know-how. The code you share, the projects you build, and your problem-solving process all help prospective employers ascertain if you’re the right fit for their team. But what kinds of portfolio projects stand out, and how can you showcase them effectively? This article provides the answers. We’ll look at: Why a machine learning portfolio is critical for impressing recruiters. How to select appropriate ML projects for your target roles. Inspirational GitHub examples that exemplify strong project structure and presentation. Tangible project ideas you can start immediately, from predictive modelling to computer vision. Best practices for showcasing your work on GitHub, personal websites, and beyond. Finally, we’ll share how you can leverage these projects to unlock opportunities—plus a handy link to upload your CV on Machine Learning Jobs when you’re ready to apply. Get ready to build a portfolio that underscores your skill set and positions you for the ML role you’ve been dreaming of!

Machine Learning Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

Machine learning is fuelling innovation across every industry, from healthcare to retail to financial services. As organisations look to harness large datasets and predictive algorithms to gain competitive advantages, the demand for skilled ML professionals continues to soar. Whether you’re aiming for a machine learning engineer role or a research scientist position, strong interview performance can open doors to dynamic projects and fulfilling careers. However, machine learning interviews differ from standard software engineering ones. Beyond coding proficiency, you’ll be tested on algorithms, mathematics, data manipulation, and applied problem-solving skills. Employers also expect you to discuss how to deploy models in production and maintain them effectively—touching on MLOps or advanced system design for scaling model inferences. In this guide, we’ve compiled 30 real coding & system‑design questions you might face in a machine learning job interview. From linear regression to distributed training strategies, these questions aim to test your depth of knowledge and practical know‑how. And if you’re ready to find your next ML opportunity in the UK, head to www.machinelearningjobs.co.uk—a prime location for the latest machine learning vacancies. Let’s dive in and gear up for success in your forthcoming interviews.

Negotiating Your Machine Learning Job Offer: Equity, Bonuses & Perks Explained

How to Secure a Compensation Package That Matches Your Technical Mastery and Strategic Influence in the UK’s ML Landscape Machine learning (ML) has rapidly shifted from an emerging discipline to a mission-critical function in modern enterprises. From optimising e-commerce recommendations to powering autonomous vehicles and driving innovation in healthcare, ML experts hold the keys to transformative outcomes. As a mid‑senior professional in this field, you’re not only crafting sophisticated algorithms; you’re often guiding strategic decisions about data pipelines, model deployment, and product direction. With such a powerful impact on business results, companies across the UK are going beyond standard salary structures to attract top ML talent. Negotiating a compensation package that truly reflects your value means looking beyond the numbers on your monthly payslip. In addition to a competitive base salary, you could be securing equity, performance-based bonuses, and perks that support your ongoing research, development, and growth. However, many mid‑senior ML professionals leave these additional benefits on the table—either because they’re unsure how to negotiate them or they simply underestimate their long-term worth. This guide explores every critical aspect of negotiating a machine learning job offer. Whether you’re joining an AI-focused start-up or a major tech player expanding its ML capabilities, understanding equity structures, bonus schemes, and strategic perks will help you lock in a package that matches your technical expertise and strategic influence. Let’s dive in.