National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Head of Engineering

Gloo
London
7 months ago
Applications closed

Related Jobs

View all jobs

Head of Data Engineering (Ad Tech) (Basé à London)

Head of Data Engineering (Ad Tech) (Basé à London)

Head of Data Engineering (Basé à London)

Head of Data Engineering (Basé à London)

Head of Data Engineering (Ad Tech)

Senior Data Engineer

My client is a pioneering AI company dedicated to building a powerful AI-driven search and discovery product that transforms how users interact with information. Their mission is to leverage the latest advancements in artificial intelligence to create seamless, intelligent experiences that drive value for our users. We are looking for a talented and visionary Head of Engineering to lead our engineering efforts, drive technical strategy, and scale our product to the next level.

Position Overview:

The Head of Engineering will oversee our engineering teams, responsible for the end-to-end development of our AI-powered search and discovery product. This role combines leadership and technical expertise, and the ideal candidate is someone with deep experience in artificial intelligence, machine learning, and search technologies. You’ll work closely with cross-functional teams, including Product, Data Science, and Design, to ensure our technology solutions meet both current and future needs.

Key Responsibilities

  • Leadership & Strategy
  • Define and drive the technical strategy for our AI-powered search and discovery product, ensuring alignment with business objectives.
  • Provide strong leadership and mentorship to a high-performing engineering team, fostering a collaborative and innovative culture.
  • Build and scale the engineering team through recruiting, hiring, and developing world-class engineering talent.
  • Collaborate closely with Product, Data Science, and Design teams to align engineering initiatives with product goals and user needs.
  • Technical Oversight
  • Oversee the design, architecture, and implementation of our AI search platform, focusing on scalability, reliability, and performance.
  • Lead the development of core search and discovery technologies, such as NLP, large language models, recommendation systems, and personalized search algorithms.
  • Ensure that best practices in software engineering, security, and quality assurance are integrated into every phase of the development lifecycle.
  • Drive continuous improvement initiatives, promoting an agile and adaptable engineering culture.
  • Innovation & Product Development
  • Work with Product to set a roadmap for the development and release of new features and capabilities.
  • Guide the research and development of cutting-edge AI techniques that differentiate our product and enhance user experiences.
  • Lead technical due diligence for partnerships and evaluate third-party solutions to augment our AI capabilities.
  • Identify opportunities to leverage emerging technologies, such as GPT-based models, vector databases, and knowledge graphs, to improve search accuracy and personalization.
  • Operational Excellence
  • Ensure high availability and reliability of all systems, with a focus on monitoring, alerting, and incident management.
  • Oversee budget and resource allocation within the engineering team, optimizing for maximum productivity and ROI.
  • Foster an inclusive and performance-driven environment, with a focus on transparency, accountability, and clear goal-setting.

Qualifications

  • Bachelor’s or Master’s degree in Computer Science, Engineering, or a related field.
  • 10+ years of experience in software engineering, with at least 3 years in a leadership role.
  • Proven track record of managing engineering teams, ideally within AI, machine learning, or search-focused technology companies.
  • Hands-on experience with AI/ML technologies, including NLP, deep learning, recommendation engines, and large-scale data processing.
  • Familiarity with modern AI frameworks (e.g., TensorFlow, PyTorch) and cloud-based architectures (e.g., AWS, GCP).
  • Expertise in building scalable, high-performance applications and familiarity with microservices, distributed systems, and DevOps best practices.
  • Strong project management skills and the ability to communicate complex technical concepts effectively.
  • Passion for innovation in AI search and a user-first approach to product development.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Machine Learning Jobs Skills Radar 2026: Emerging Tools, Frameworks & Platforms to Learn Now

Machine learning is no longer confined to academic research—it's embedded in how UK companies detect fraud, recommend content, automate processes & forecast risk. But with model complexity rising and LLMs transforming workflows, employers are demanding new skills from machine learning professionals. Welcome to the Machine Learning Jobs Skills Radar 2026—your annual guide to the top languages, frameworks, platforms & tools shaping machine learning roles in the UK. Whether you're an aspiring ML engineer or a mid-career data scientist, this radar shows what to learn now to stay job-ready in 2026.

How to Find Hidden Machine Learning Jobs in the UK Using Professional Bodies like BCS, Turing Society & More

Machine learning (ML) continues to transform sectors across the UK—from fintech and retail to healthtech and autonomous systems. But while the demand for ML engineers, researchers, and applied scientists is growing, many of the best opportunities are never posted on traditional job boards. So, where do you find them? The answer lies in professional bodies, academic-industry networks, and tight-knit ML communities. In this guide, we’ll show you how to uncover hidden machine learning jobs in the UK by engaging with groups like the BCS (The Chartered Institute for IT), Turing Society, Alan Turing Institute, and others. We’ll explore how to use member directories, CPD events, SIGs (Special Interest Groups), and community projects to build connections, gain early access to job leads, and raise your professional profile in the ML ecosystem.

How to Get a Better Machine Learning Job After a Lay-Off or Redundancy

Redundancy in machine learning can feel especially frustrating when your role was technically advanced, strategically important, or AI-facing. But the UK still has strong demand for machine learning professionals across fintech, healthtech, retail, cybersecurity, autonomous systems, and generative AI. Whether you're a research-oriented ML engineer, production-focused MLOps developer, or applied scientist, this guide is designed to help you bounce back from redundancy and find a better opportunity that suits your goals.